BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21525747)

  • 1. Retinogeniculostriate pathway components scale with orbit convergence only in primates and not in other mammals.
    Heesy CP; Kamilar JM; Willms J
    Brain Behav Evol; 2011; 77(2):105-15. PubMed ID: 21525747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the relationship between orbit orientation and binocular visual field overlap in mammals.
    Heesy CP
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Nov; 281(1):1104-10. PubMed ID: 15470671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecomorphology of orbit orientation and the adaptive significance of binocular vision in primates and other mammals.
    Heesy CP
    Brain Behav Evol; 2008; 71(1):54-67. PubMed ID: 17878718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteological evidence for the evolution of activity pattern and visual acuity in primates.
    Kay RF; Kirk EC
    Am J Phys Anthropol; 2000 Oct; 113(2):235-62. PubMed ID: 11002207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Snakes as agents of evolutionary change in primate brains.
    Isbell LA
    J Hum Evol; 2006 Jul; 51(1):1-35. PubMed ID: 16545427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Euprimate origins: the eyes have it.
    Ravosa MJ; Savakova DG
    J Hum Evol; 2004 Mar; 46(3):357-64. PubMed ID: 14984789
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparative morphology of the eye in primates.
    Kirk EC
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Nov; 281(1):1095-103. PubMed ID: 15470670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores.
    Barton RA; Purvis A; Harvey PH
    Philos Trans R Soc Lond B Biol Sci; 1995 Jun; 348(1326):381-92. PubMed ID: 7480110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of brain structure volumes in insectivora and primates. IV. Non-cortical visual structures.
    Stephan H; Frahm HD; Baron G
    J Hirnforsch; 1984; 25(4):385-403. PubMed ID: 6481154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of eye size and shape in primates.
    Ross CF; Kirk EC
    J Hum Evol; 2007 Mar; 52(3):294-313. PubMed ID: 17156820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual influences on primate encephalization.
    Kirk EC
    J Hum Evol; 2006 Jul; 51(1):76-90. PubMed ID: 16564563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Masticatory stress, orbital orientation and the evolution of the primate postorbital bar.
    Ravosa MJ; Noble VE; Hylander WL; Johnson KR; Kowalski EM
    J Hum Evol; 2000 May; 38(5):667-93. PubMed ID: 10799259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of activity pattern on eye size and orbital aperture size in primates.
    Kirk EC
    J Hum Evol; 2006 Aug; 51(2):159-70. PubMed ID: 16620912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A common mammalian plan of accessory optic system organization revealed in all primates.
    Cooper HM; Magnin M
    Nature; 1986 Dec 4-10; 324(6096):457-9. PubMed ID: 2431321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nocturnal bottleneck and the evolution of mammalian vision.
    Heesy CP; Hall MI
    Brain Behav Evol; 2010; 75(3):195-203. PubMed ID: 20733295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation.
    Ziburkus J; Guido W
    J Neurophysiol; 2006 Nov; 96(5):2775-84. PubMed ID: 16899631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optic foramen morphology and activity pattern in birds.
    Hall MI; Iwaniuk AN; Gutiérrez-Ibáñez C
    Anat Rec (Hoboken); 2009 Nov; 292(11):1827-45. PubMed ID: 19777569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional cell classes and functional architecture in the early visual system of a highly visual rodent.
    Van Hooser SD; Heimel JA; Nelson SB
    Prog Brain Res; 2005; 149():127-45. PubMed ID: 16226581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for cerebellar efferents to the ventral lateral geniculate nucleus and the lateral terminal nucleus of the accessory optic system in the rabbit. A morphological study with comments on the organizational features of visuo-oculomotor-trunco-cerebellar loops.
    Zimny R; Grottel K; Kotecki A
    J Hirnforsch; 1986; 27(2):159-212. PubMed ID: 3722805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic response to optic centers to visual stimuli in the albino rat: anatomical and physiological considerations.
    Toga AW; Collins RC
    J Comp Neurol; 1981 Jul; 199(4):443-64. PubMed ID: 6168665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.