These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 21526119)
1. Towards accurate estimation of the proportion of true null hypotheses in multiple testing. Zhang SD PLoS One; 2011 Apr; 6(4):e18874. PubMed ID: 21526119 [TBL] [Abstract][Full Text] [Related]
2. Re-sampling strategy to improve the estimation of number of null hypotheses in FDR control under strong correlation structures. Lu X; Perkins DL BMC Bioinformatics; 2007 May; 8():157. PubMed ID: 17509157 [TBL] [Abstract][Full Text] [Related]
3. Comparison of methods for estimating the number of true null hypotheses in multiplicity testing. Hsueh HM; Chen JJ; Kodell RL J Biopharm Stat; 2003 Nov; 13(4):675-89. PubMed ID: 14584715 [TBL] [Abstract][Full Text] [Related]
4. ConReg-R: Extrapolative recalibration of the empirical distribution of p-values to improve false discovery rate estimates. Li J; Paramita P; Choi KP; Karuturi RK Biol Direct; 2011 May; 6():27. PubMed ID: 21595983 [TBL] [Abstract][Full Text] [Related]
5. Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data. Jain N; Cho H; O'Connell M; Lee JK BMC Bioinformatics; 2005 Jul; 6():187. PubMed ID: 16042779 [TBL] [Abstract][Full Text] [Related]
6. Bias and variance reduction in estimating the proportion of true-null hypotheses. Cheng Y; Gao D; Tong T Biostatistics; 2015 Jan; 16(1):189-204. PubMed ID: 24963010 [TBL] [Abstract][Full Text] [Related]
7. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. Brinster R; Köttgen A; Tayo BO; Schumacher M; Sekula P; BMC Bioinformatics; 2018 Mar; 19(1):78. PubMed ID: 29499647 [TBL] [Abstract][Full Text] [Related]
8. On correcting the overestimation of the permutation-based false discovery rate estimator. Jiao S; Zhang S Bioinformatics; 2008 Aug; 24(15):1655-61. PubMed ID: 18573796 [TBL] [Abstract][Full Text] [Related]
9. Estimating the Proportion of True Null Hypotheses Using the Pattern of Observed Tong T; Feng Z; Hilton JS; Zhao H J Appl Stat; 2013 Jan; 40(9):1949-1964. PubMed ID: 24078762 [TBL] [Abstract][Full Text] [Related]
10. Ranking analysis of microarray data: a powerful method for identifying differentially expressed genes. Tan YD; Fornage M; Fu YX Genomics; 2006 Dec; 88(6):846-854. PubMed ID: 16979869 [TBL] [Abstract][Full Text] [Related]
11. A moment-based method for estimating the proportion of true null hypotheses and its application to microarray gene expression data. Lai Y Biostatistics; 2007 Oct; 8(4):744-55. PubMed ID: 17244594 [TBL] [Abstract][Full Text] [Related]
12. Power and sample size estimation in microarray studies. Lin WJ; Hsueh HM; Chen JJ BMC Bioinformatics; 2010 Jan; 11():48. PubMed ID: 20100337 [TBL] [Abstract][Full Text] [Related]
13. Estimating the proportion of equivalently expressed genes in microarray data based on transformed test statistics. Jiao S; Zhang S J Comput Biol; 2010 Feb; 17(2):177-87. PubMed ID: 20078228 [TBL] [Abstract][Full Text] [Related]
14. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Xie Y; Pan W; Khodursky AB Bioinformatics; 2005 Dec; 21(23):4280-8. PubMed ID: 16188930 [TBL] [Abstract][Full Text] [Related]
15. ExactFDR: exact computation of false discovery rate estimate in case-control association studies. Wojcik J; Forner K Bioinformatics; 2008 Oct; 24(20):2407-8. PubMed ID: 18662924 [TBL] [Abstract][Full Text] [Related]
16. Estimating the proportion of true null hypotheses for multiple comparisons. Jiang H; Doerge RW Cancer Inform; 2008; 6():25-32. PubMed ID: 19259400 [TBL] [Abstract][Full Text] [Related]