BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21526744)

  • 1. Structure of even/odd trinucleotide repeat sequences modulates persistence of non-B conformations and conversion to duplex.
    Figueroa AA; Cattie D; Delaney S
    Biochemistry; 2011 May; 50(21):4441-50. PubMed ID: 21526744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies of hairpin to duplex conversion for trinucleotide repeat sequences.
    Avila Figueroa A; Delaney S
    J Biol Chem; 2010 May; 285(19):14648-57. PubMed ID: 20228068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
    Avila-Figueroa A; Cattie D; Delaney S
    Biochem Biophys Res Commun; 2011 Oct; 413(4):532-6. PubMed ID: 21924238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique Length-Dependent Biophysical Properties of Repetitive DNA.
    Huang J; Delaney S
    J Phys Chem B; 2016 May; 120(18):4195-203. PubMed ID: 27115707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats.
    Zhang T; Huang J; Gu L; Li GM
    DNA Repair (Amst); 2012 Feb; 11(2):201-9. PubMed ID: 22041023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution NMR Structures of Intrastrand Hairpins Formed by CTG Trinucleotide Repeats.
    Wan L; He A; Li J; Guo P; Han D
    ACS Chem Neurosci; 2024 Feb; 15(4):868-876. PubMed ID: 38319692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts.
    Xu P; Pan F; Roland C; Sagui C; Weninger K
    Nucleic Acids Res; 2020 Mar; 48(5):2232-2245. PubMed ID: 31974547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.
    Xu P; Zhang J; Pan F; Mahn C; Roland C; Sagui C; Weninger K
    J Mol Biol; 2023 May; 435(10):168086. PubMed ID: 37024008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-Range Hairpin Slippage Reconfiguration Dynamics in Trinucleotide Repeat Sequences.
    Ni CW; Wei YJ; Shen YI; Lee IR
    J Phys Chem Lett; 2019 Jul; 10(14):3985-3990. PubMed ID: 31241956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incidence and persistence of 8-oxo-7,8-dihydroguanine within a hairpin intermediate exacerbates a toxic oxidation cycle associated with trinucleotide repeat expansion.
    Jarem DA; Wilson NR; Schermerhorn KM; Delaney S
    DNA Repair (Amst); 2011 Aug; 10(8):887-96. PubMed ID: 21727036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural roles of CTG repeats in slippage expansion during DNA replication.
    Chi LM; Lam SL
    Nucleic Acids Res; 2005; 33(5):1604-17. PubMed ID: 15767285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-Dependent Effects of Monovalent Cations on the Structural Dynamics of Trinucleotide-Repeat DNA Hairpins.
    Mitchell ML; Leveille MP; Solecki RS; Tran T; Cannon B
    J Phys Chem B; 2018 Dec; 122(50):11841-11851. PubMed ID: 30441902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.
    Guo J; Gu L; Leffak M; Li GM
    Cell Res; 2016 Jul; 26(7):775-86. PubMed ID: 27255792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.
    Hou C; Chan NL; Gu L; Li GM
    Nat Struct Mol Biol; 2009 Aug; 16(8):869-75. PubMed ID: 19597480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes.
    Smith GK; Jie J; Fox GE; Gao X
    Nucleic Acids Res; 1995 Nov; 23(21):4303-11. PubMed ID: 7501450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA.
    Gacy AM; McMurray CT
    Biochemistry; 1998 Jun; 37(26):9426-34. PubMed ID: 9649325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAG/CTG repeats alter the affinity for the histone core and the positioning of DNA in the nucleosome.
    Volle CB; Delaney S
    Biochemistry; 2012 Dec; 51(49):9814-25. PubMed ID: 23157165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA.
    Pearson CE; Sinden RR
    Curr Opin Struct Biol; 1998 Jun; 8(3):321-30. PubMed ID: 9666328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.