BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21526795)

  • 1. Ground-state destabilization in orotate phosphoribosyltransferases by binding isotope effects.
    Zhang Y; Schramm VL
    Biochemistry; 2011 May; 50(21):4813-8. PubMed ID: 21526795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition states of Plasmodium falciparum and human orotate phosphoribosyltransferases.
    Zhang Y; Luo M; Schramm VL
    J Am Chem Soc; 2009 Apr; 131(13):4685-94. PubMed ID: 19292447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrophosphate interactions at the transition states of Plasmodium falciparum and human orotate phosphoribosyltransferases.
    Zhang Y; Schramm VL
    J Am Chem Soc; 2010 Jun; 132(25):8787-94. PubMed ID: 20527751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition state analogues of Plasmodium falciparum and human orotate phosphoribosyltransferases.
    Zhang Y; Evans GB; Clinch K; Crump DR; Harris LD; Fröhlich RF; Tyler PC; Hazleton KZ; Cassera MB; Schramm VL
    J Biol Chem; 2013 Nov; 288(48):34746-54. PubMed ID: 24158442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Half-of-sites binding of orotidine 5'-phosphate and alpha-D-5-phosphorylribose 1-diphosphate to orotate phosphoribosyltransferase from Saccharomyces cerevisiae supports a novel variant of the Theorell-Chance mechanism with alternating site catalysis.
    McClard RW; Holets EA; MacKinnon AL; Witte JF
    Biochemistry; 2006 Apr; 45(16):5330-42. PubMed ID: 16618122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaving group activation and pyrophosphate ionic state at the catalytic site of Plasmodium falciparum orotate phosphoribosyltransferase.
    Zhang Y; Deng H; Schramm VL
    J Am Chem Soc; 2010 Dec; 132(47):17023-31. PubMed ID: 21067187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uridine-5'-phosphate synthase: evidence for substrate cycling involving this bifunctional protein.
    Traut TW
    Arch Biochem Biophys; 1989 Jan; 268(1):108-15. PubMed ID: 2912371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loop residues and catalysis in OMP synthase.
    Wang GP; Hansen MR; Grubmeyer C
    Biochemistry; 2012 Jun; 51(22):4406-15. PubMed ID: 22531099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of enzyme-ribofuranosyl contacts in the ground state and transition state for orotidine 5'-phosphate decarboxylase: a role for substrate destabilization?
    Miller BG; Butterfoss GL; Short SA; Wolfenden R
    Biochemistry; 2001 May; 40(21):6227-32. PubMed ID: 11371183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does the bifunctional uridylate synthase channel orotidine 5'-phosphate? Kinetics of orotate phosphoribosyltransferase and orotidylate decarboxylase activities fit a noninteracting sites model.
    McClard RW; Shokat KM
    Biochemistry; 1987 Jun; 26(12):3378-84. PubMed ID: 3651388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical studies of the effect of thio substitution on orotidine monophosphate decarboxylase substrates.
    Phillips LM; Lee JK
    J Org Chem; 2005 Feb; 70(4):1211-21. PubMed ID: 15704953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human malaria parasite orotate phosphoribosyltransferase: functional expression, characterization of kinetic reaction mechanism and inhibition profile.
    Krungkrai SR; Aoki S; Palacpac NM; Sato D; Mitamura T; Krungkrai J; Horii T
    Mol Biochem Parasitol; 2004 Apr; 134(2):245-55. PubMed ID: 15003844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition state structure of Salmonella typhimurium orotate phosphoribosyltransferase.
    Tao W; Grubmeyer C; Blanchard JS
    Biochemistry; 1996 Jan; 35(1):14-21. PubMed ID: 8555167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remarkable rate enhancement of orotidine 5'-monophosphate decarboxylase is due to transition-state stabilization rather than to ground-state destabilization.
    Warshel A; Strajbl M; Villà J; Florián J
    Biochemistry; 2000 Dec; 39(48):14728-38. PubMed ID: 11101287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Carboxylate in Enzyme-Catalyzed Decarboxylation of Orotidine 5'-Monophosphate: Transition State Stabilization Dominates Over Ground State Destabilization.
    Goryanova B; Amyes TL; Richard JP
    J Am Chem Soc; 2019 Aug; 141(34):13468-13478. PubMed ID: 31365243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes of uridine 5'-monophosphate biosynthesis in Schistosoma mansoni.
    Iltzsch MH; Niedzwicki JG; Senft AW; Cha S; El Kouni MH
    Mol Biochem Parasitol; 1984 Jun; 12(2):153-71. PubMed ID: 6090897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic mechanism of OMP synthase: a slow physical step following group transfer limits catalytic rate.
    Wang GP; Lundegaard C; Jensen KF; Grubmeyer C
    Biochemistry; 1999 Jan; 38(1):275-83. PubMed ID: 9890908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct spectrophotometric assays for orotate phosphoribosyltransferase and orotidylate decarboxylase.
    Shostak K; Christopherson RI; Jones ME
    Anal Biochem; 1990 Dec; 191(2):365-9. PubMed ID: 2085181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon isotope effect study on orotidine 5'-monophosphate decarboxylase: support for an anionic intermediate.
    Van Vleet JL; Reinhardt LA; Miller BG; Sievers A; Cleland WW
    Biochemistry; 2008 Jan; 47(2):798-803. PubMed ID: 18081312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of magnesium cations in the yeast orotate phosphoribosyltransferase catalyzed reaction. Mechanism of the inhibition by Cu++ and Ni++ ions.
    Dodin G; Lalart D; Dubois JE
    J Inorg Biochem; 1982 Jun; 16(3):201-13. PubMed ID: 7050303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.