BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21526829)

  • 1. Physicochemical mechanism for the enhanced ability of lipid membrane penetration of polyarginine.
    Takechi Y; Yoshii H; Tanaka M; Kawakami T; Aimoto S; Saito H
    Langmuir; 2011 Jun; 27(11):7099-107. PubMed ID: 21526829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes.
    Takechi Y; Tanaka H; Kitayama H; Yoshii H; Tanaka M; Saito H
    Chem Phys Lipids; 2012 Jan; 165(1):51-8. PubMed ID: 22108318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature.
    Katayama S; Nakase I; Yano Y; Murayama T; Nakata Y; Matsuzaki K; Futaki S
    Biochim Biophys Acta; 2013 Sep; 1828(9):2134-42. PubMed ID: 23711826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E.
    Ohgita T; Takechi-Haraya Y; Nadai R; Kotani M; Tamura Y; Nishikiori K; Nishitsuji K; Uchimura K; Hasegawa K; Sakai-Kato K; Akaji K; Saito H
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):541-549. PubMed ID: 30562499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length dependence of the coil <--> beta-sheet transition in a membrane environment.
    Meier M; Seelig J
    J Am Chem Soc; 2008 Jan; 130(3):1017-24. PubMed ID: 18163629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of the coil <==> beta-sheet transition in a membrane environment.
    Meier M; Seelig J
    J Mol Biol; 2007 May; 369(1):277-89. PubMed ID: 17412361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium.
    Wieprecht T; Apostolov O; Beyermann M; Seelig J
    J Mol Biol; 1999 Dec; 294(3):785-94. PubMed ID: 10610796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.
    Takechi-Haraya Y; Nadai R; Kimura H; Nishitsuji K; Uchimura K; Sakai-Kato K; Kawakami K; Shigenaga A; Kawakami T; Otaka A; Hojo H; Sakashita N; Saito H
    Biochim Biophys Acta; 2016 Jun; 1858(6):1339-49. PubMed ID: 27003128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane binding and translocation of cell-penetrating peptides.
    Thorén PE; Persson D; Esbjörner EK; Goksör M; Lincoln P; Nordén B
    Biochemistry; 2004 Mar; 43(12):3471-89. PubMed ID: 15035618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers.
    Ciobanasu C; Harms E; Tünnemann G; Cardoso MC; Kubitscheck U
    Biochemistry; 2009 Jun; 48(22):4728-37. PubMed ID: 19400584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of the coil-alpha-helix transition of amphipathic peptides in a membrane environment: the role of vesicle curvature.
    Wieprecht T; Beyermann M; Seelig J
    Biophys Chem; 2002 May; 96(2-3):191-201. PubMed ID: 12034440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different membrane behaviour and cellular uptake of three basic arginine-rich peptides.
    Walrant A; Correia I; Jiao CY; Lequin O; Bent EH; Goasdoué N; Lacombe C; Chassaing G; Sagan S; Alves ID
    Biochim Biophys Acta; 2011 Jan; 1808(1):382-93. PubMed ID: 20920465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane interactions of cell-penetrating peptides probed by tryptophan fluorescence and dichroism techniques: correlations of structure to cellular uptake.
    Caesar CE; Esbjörner EK; Lincoln P; Nordén B
    Biochemistry; 2006 Jun; 45(24):7682-92. PubMed ID: 16768464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling the binding and orientation of the antimicrobial peptide Plantaricin 149 in zwitterionic and negatively charged membranes.
    Kumagai PS; Sousa VK; Donato M; Itri R; Beltramini LM; Araujo APU; Buerck J; Wallace BA; Lopes JLS
    Eur Biophys J; 2019 Oct; 48(7):621-633. PubMed ID: 31324942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained molecular dynamics studies of the translocation mechanism of polyarginines across asymmetric membrane under tension.
    He X; Lin M; Sha B; Feng S; Shi X; Qu Z; Xu F
    Sci Rep; 2015 Aug; 5():12808. PubMed ID: 26235300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of alpha-and beta-oligoarginine-acids and amides with anionic lipid vesicles: a mechanistic and thermodynamic study.
    Hitz T; Iten R; Gardiner J; Namoto K; Walde P; Seebach D
    Biochemistry; 2006 May; 45(18):5817-29. PubMed ID: 16669625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.