These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 21526860)
1. Benzotrithiophene--a planar, electron-rich building block for organic semiconductors. Nielsen CB; Fraser JM; Schroeder BC; Du J; White AJ; Zhang W; McCulloch I Org Lett; 2011 May; 13(9):2414-7. PubMed ID: 21526860 [TBL] [Abstract][Full Text] [Related]
2. Making benzotrithiophene a stronger electron donor. Guo X; Wang S; Enkelmann V; Baumgarten M; Müllen K Org Lett; 2011 Nov; 13(22):6062-5. PubMed ID: 22032236 [TBL] [Abstract][Full Text] [Related]
3. Novel stable (3E,7E)-3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b']difuran-2,6(3H,7H)-dione based donor-acceptor polymer semiconductors for n-type organic thin film transistors. Yan Z; Sun B; Li Y Chem Commun (Camb); 2013 May; 49(36):3790-2. PubMed ID: 23545845 [TBL] [Abstract][Full Text] [Related]
4. Donor-acceptor-donor type organic semiconductor containing quinoidal benzo[1,2-b:4,5-b']dithiophene for high performance n-channel field-effect transistors. Wang S; Wang M; Zhang X; Yang X; Huang Q; Qiao X; Zhang H; Wu Q; Xiong Y; Gao J; Li H Chem Commun (Camb); 2014 Jan; 50(8):985-7. PubMed ID: 24305698 [TBL] [Abstract][Full Text] [Related]
5. 2,1,3-Benzothiadiazole-5,6-dicarboxylic imide--a versatile building block for additive- and annealing-free processing of organic solar cells with efficiencies exceeding 8%. Nielsen CB; Ashraf RS; Treat ND; Schroeder BC; Donaghey JE; White AJ; Stingelin N; McCulloch I Adv Mater; 2015 Feb; 27(5):948-53. PubMed ID: 25511684 [TBL] [Abstract][Full Text] [Related]
6. Benzotrithiophene-based donor-acceptor copolymers with distinct supramolecular organizations. Guo X; Puniredd SR; Baumgarten M; Pisula W; Müllen K J Am Chem Soc; 2012 May; 134(20):8404-7. PubMed ID: 22574928 [TBL] [Abstract][Full Text] [Related]
7. Optoelectronic and charge transport properties at organic-organic semiconductor interfaces: comparison between polyfluorene-based polymer blend and copolymer. Kim JS; Lu L; Sreearunothai P; Seeley A; Yim KH; Petrozza A; Murphy CE; Beljonne D; Cornil J; Friend RH J Am Chem Soc; 2008 Oct; 130(39):13120-31. PubMed ID: 18767836 [TBL] [Abstract][Full Text] [Related]
8. In-situ template synthesis of a polymer/semiconductor nanohybrid using amphiphilic conducting block copolymers. Lee YH; Chang CJ; Kao CJ; Dai CA Langmuir; 2010 Mar; 26(6):4196-206. PubMed ID: 20095618 [TBL] [Abstract][Full Text] [Related]
9. Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability. Guo X; Ortiz RP; Zheng Y; Hu Y; Noh YY; Baeg KJ; Facchetti A; Marks TJ J Am Chem Soc; 2011 Feb; 133(5):1405-18. PubMed ID: 21207965 [TBL] [Abstract][Full Text] [Related]
10. Random benzotrithiophene-based donor-acceptor copolymers for efficient organic photovoltaic devices. Nielsen CB; Ashraf RS; Schroeder BC; D'Angelo P; Watkins SE; Song K; Anthopoulos TD; McCulloch I Chem Commun (Camb); 2012 Jun; 48(47):5832-4. PubMed ID: 22569762 [TBL] [Abstract][Full Text] [Related]
11. C–H arylation of unsubstituted furan and thiophene with acceptor bromides: access to donor–acceptor–donor-type building blocks for organic electronics. Matsidik R; Martin J; Schmidt S; Obermayer J; Lombeck F; Nübling F; Komber H; Fazzi D; Sommer M J Org Chem; 2015 Jan; 80(2):980-7. PubMed ID: 25521835 [TBL] [Abstract][Full Text] [Related]
12. A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells. Zhou H; Yang L; Stoneking S; You W ACS Appl Mater Interfaces; 2010 May; 2(5):1377-83. PubMed ID: 20438089 [TBL] [Abstract][Full Text] [Related]
13. Ladder-type oligo-p-phenylene-containing copolymers with high open-circuit voltages and ambient photovoltaic activity. Zheng Q; Jung BJ; Sun J; Katz HE J Am Chem Soc; 2010 Apr; 132(15):5394-404. PubMed ID: 20102195 [TBL] [Abstract][Full Text] [Related]
14. Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. Usta H; Risko C; Wang Z; Huang H; Deliomeroglu MK; Zhukhovitskiy A; Facchetti A; Marks TJ J Am Chem Soc; 2009 Apr; 131(15):5586-608. PubMed ID: 19331320 [TBL] [Abstract][Full Text] [Related]
15. Material strategies for black-to-transmissive window-type polymer electrochromic devices. Vasilyeva SV; Beaujuge PM; Wang S; Babiarz JE; Ballarotto VW; Reynolds JR ACS Appl Mater Interfaces; 2011 Apr; 3(4):1022-32. PubMed ID: 21395243 [TBL] [Abstract][Full Text] [Related]
16. Thiophene polymer semiconductors for organic thin-film transistors. Ong BS; Wu Y; Li Y; Liu P; Pan H Chemistry; 2008; 14(16):4766-78. PubMed ID: 18366043 [TBL] [Abstract][Full Text] [Related]
17. Carbazole-based polymers for organic photovoltaic devices. Li J; Grimsdale AC Chem Soc Rev; 2010 Jul; 39(7):2399-410. PubMed ID: 20571668 [TBL] [Abstract][Full Text] [Related]
18. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex. Rosokha SV; Kochi JK Acc Chem Res; 2008 May; 41(5):641-53. PubMed ID: 18380446 [TBL] [Abstract][Full Text] [Related]
19. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Heremans P; Cheyns D; Rand BP Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055 [TBL] [Abstract][Full Text] [Related]
20. Pyradinodithiazole: An Electron-Accepting Monomer Unit for Hole-Transporting and Electron-Transporting Conjugated Copolymers. Ie Y; Sasada S; Karakawa M; Aso Y Org Lett; 2015 Sep; 17(18):4580-3. PubMed ID: 26382151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]