These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 21527363)

  • 21. Silencing by raised extracellular Ca2+ of pre-Bötzinger complex neurons in newborn rat brainstem slices without change of membrane potential or input resistance.
    Panaitescu B; Ruangkittisakul A; Ballanyi K
    Neurosci Lett; 2009 May; 456(1):25-9. PubMed ID: 19429127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PHOX2B mutations and ventilatory control.
    Gallego J; Dauger S
    Respir Physiol Neurobiol; 2008 Dec; 164(1-2):49-54. PubMed ID: 18675942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glial cell line-derived neurotrophic factor (GDNF) is required for differentiation of pontine noradrenergic neurons and patterning of central respiratory output.
    Huang L; Guo H; Hellard DT; Katz DM
    Neuroscience; 2005; 130(1):95-105. PubMed ID: 15561428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence imaging of active respiratory networks.
    Ruangkittisakul A; Okada Y; Oku Y; Koshiya N; Ballanyi K
    Respir Physiol Neurobiol; 2009 Aug; 168(1-2):26-38. PubMed ID: 19505861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hindbrain interneurons and axon guidance signaling critical for breathing.
    Bouvier J; Thoby-Brisson M; Renier N; Dubreuil V; Ericson J; Champagnat J; Pierani A; Chédotal A; Fortin G
    Nat Neurosci; 2010 Sep; 13(9):1066-74. PubMed ID: 20680010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient Suppression of Dbx1 PreBötzinger Interneurons Disrupts Breathing in Adult Mice.
    Vann NC; Pham FD; Hayes JA; Kottick A; Del Negro CA
    PLoS One; 2016; 11(9):e0162418. PubMed ID: 27611210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rnx deficiency results in congenital central hypoventilation.
    Shirasawa S; Arata A; Onimaru H; Roth KA; Brown GA; Horning S; Arata S; Okumura K; Sasazuki T; Korsmeyer SJ
    Nat Genet; 2000 Mar; 24(3):287-90. PubMed ID: 10700185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of sevoflurane on respiratory rhythm oscillators in the medulla oblongata.
    Takita K; Morimoto Y
    Respir Physiol Neurobiol; 2010 Aug; 173(1):86-94. PubMed ID: 20603230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracellular calcium induces quiescence of the low-frequency embryonic motor rhythm in the mouse isolated brainstem.
    Meillerais A; Champagnat J; Morin-Surun MP
    J Neurosci Res; 2010 Dec; 88(16):3555-65. PubMed ID: 20936702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Respiratory rhythm generation: triple oscillator hypothesis.
    Anderson TM; Ramirez JM
    F1000Res; 2017; 6():139. PubMed ID: 28299192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unraveling the mechanism for respiratory rhythm generation.
    McCrimmon DR; Ramirez JM; Alford S; Zuperku EJ
    Bioessays; 2000 Jan; 22(1):6-9. PubMed ID: 10649284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primordial respiratory-like rhythm generation in the vertebrate embryo.
    Champagnat J; Fortin G
    Trends Neurosci; 1997 Mar; 20(3):119-24. PubMed ID: 9061866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ancient gill and lung oscillators may generate the respiratory rhythm of frogs and rats.
    Vasilakos K; Wilson RJ; Kimura N; Remmers JE
    J Neurobiol; 2005 Feb; 62(3):369-85. PubMed ID: 15551345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogenetic trends in respiratory rhythmogenesis: insights from ectothermic vertebrates.
    Kinkead R
    Respir Physiol Neurobiol; 2009 Aug; 168(1-2):39-48. PubMed ID: 19505591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atoh1-dependent rhombic lip neurons are required for temporal delay between independent respiratory oscillators in embryonic mice.
    Tupal S; Huang WH; Picardo MC; Ling GY; Del Negro CA; Zoghbi HY; Gray PA
    Elife; 2014 May; 3():e02265. PubMed ID: 24842997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of the brainstem respiratory circuit.
    van der Heijden ME; Zoghbi HY
    Wiley Interdiscip Rev Dev Biol; 2020 May; 9(3):e366. PubMed ID: 31816185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Teashirt 3 regulates development of neurons involved in both respiratory rhythm and airflow control.
    Caubit X; Thoby-Brisson M; Voituron N; Filippi P; Bévengut M; Faralli H; Zanella S; Fortin G; Hilaire G; Fasano L
    J Neurosci; 2010 Jul; 30(28):9465-76. PubMed ID: 20631175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple model of dynamic interactions between respiratory centers.
    Joseph IM; Butera RJ
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():5840-2. PubMed ID: 17281587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microglia shape the embryonic development of mammalian respiratory networks.
    Cabirol MJ; Cardoit L; Courtand G; Mayeur ME; Simmers J; Pascual O; Thoby-Brisson M
    Elife; 2022 Nov; 11():. PubMed ID: 36321865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atoh1 governs the migration of postmitotic neurons that shape respiratory effectiveness at birth and chemoresponsiveness in adulthood.
    Huang WH; Tupal S; Huang TW; Ward CS; Neul JL; Klisch TJ; Gray PA; Zoghbi HY
    Neuron; 2012 Sep; 75(5):799-809. PubMed ID: 22958821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.