These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 21527493)
1. Binary system thermodynamics to control pore architecture of PCL scaffold via temperature-driven phase separation process. Guarino V; Guaccio A; Guarnieri D; Netti PA; Ambrosio L J Biomater Appl; 2012 Sep; 27(3):241-54. PubMed ID: 21527493 [TBL] [Abstract][Full Text] [Related]
2. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related]
3. Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering. Izquierdo R; Garcia-Giralt N; Rodriguez MT; Cáceres E; García SJ; Gómez Ribelles JL; Monleón M; Monllau JC; Suay J J Biomed Mater Res A; 2008 Apr; 85(1):25-35. PubMed ID: 17688257 [TBL] [Abstract][Full Text] [Related]
5. Manipulating co-continuous polymer blends to create PCL scaffolds with fully interconnected and anisotropic pore architecture. Guarino V; Guaccio A; Ambrosio L J Appl Biomater Biomech; 2011; 9(1):34-9. PubMed ID: 21445831 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of highly porous scaffolds for tissue engineering based on star-shaped functional poly(ε-caprolactone). Theiler S; Mela P; Diamantouros SE; Jockenhoevel S; Keul H; Möller M Biotechnol Bioeng; 2011 Mar; 108(3):694-703. PubMed ID: 21246513 [TBL] [Abstract][Full Text] [Related]
7. Comparison of cellular proliferation on dense and porous PCL scaffolds. Saşmazel HT; Gümüşderelioğlu M; Gürpinar A; Onur MA Biomed Mater Eng; 2008; 18(3):119-28. PubMed ID: 18725692 [TBL] [Abstract][Full Text] [Related]
8. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related]
9. Engineered mu-bimodal poly(epsilon-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation. Salerno A; Guarnieri D; Iannone M; Zeppetelli S; Di Maio E; Iannace S; Netti PA Acta Biomater; 2009 May; 5(4):1082-93. PubMed ID: 19010746 [TBL] [Abstract][Full Text] [Related]
10. Architecture control of three-dimensional polymeric scaffolds for soft tissue engineering. I. Establishment and validation of numerical models. Cao Y; Davidson MR; O'Connor AJ; Stevens GW; Cooper-White JJ J Biomed Mater Res A; 2004 Oct; 71(1):81-9. PubMed ID: 15368257 [TBL] [Abstract][Full Text] [Related]
11. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering. Safinia L; Mantalaris A; Bismarck A Langmuir; 2006 Mar; 22(7):3235-42. PubMed ID: 16548583 [TBL] [Abstract][Full Text] [Related]
12. Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Neves SC; Moreira Teixeira LS; Moroni L; Reis RL; Van Blitterswijk CA; Alves NM; Karperien M; Mano JF Biomaterials; 2011 Feb; 32(4):1068-79. PubMed ID: 20980050 [TBL] [Abstract][Full Text] [Related]
13. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [TBL] [Abstract][Full Text] [Related]
14. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size. Mathews A; Colombus S; Krishnan VK; Krishnan LK J Tissue Eng Regen Med; 2012 Jun; 6(6):451-61. PubMed ID: 21800434 [TBL] [Abstract][Full Text] [Related]
15. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
17. Hierarchical scaffolds via combined macro- and micro-phase separation. George PA; Quinn K; Cooper-White JJ Biomaterials; 2010 Feb; 31(4):641-7. PubMed ID: 19836830 [TBL] [Abstract][Full Text] [Related]
18. The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering. Chang KY; Hung LH; Chu IM; Ko CS; Lee YD J Biomed Mater Res A; 2010 Feb; 92(2):712-23. PubMed ID: 19274722 [TBL] [Abstract][Full Text] [Related]
19. Porous scaffolds from high molecular weight polyesters synthesized via enzyme-catalyzed ring-opening polymerization. Srivastava RK; Albertsson AC Biomacromolecules; 2006 Sep; 7(9):2531-8. PubMed ID: 16961314 [TBL] [Abstract][Full Text] [Related]
20. Exploring cellular adhesion and differentiation in a micro-/nano-hybrid polymer scaffold. Cheng K; Kisaalita WS Biotechnol Prog; 2010; 26(3):838-46. PubMed ID: 20196160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]