BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21527817)

  • 1. Interspecific comparisons of lymph volume and lymphatic fluxes: do lymph reserves and lymph mobilization capacities vary in anurans from different environments?
    Hillman SS; Drewes RC; Hedrick MS; Withers PC
    Physiol Biochem Zool; 2011; 84(3):268-76. PubMed ID: 21527817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lymph flux rates from various lymph sacs in the cane toad Rhinella marina: an experimental evaluation of the roles of compliance, skeletal muscles and the lungs in the movement of lymph.
    Hillman SS; Hedrick MS; Drewes RC; Withers PC
    J Exp Biol; 2010 Sep; 213(Pt 18):3161-6. PubMed ID: 20802118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary compliance and lung volume varies with ecomorphology in anuran amphibians: implications for ventilatory-assisted lymph flux.
    Hedrick MS; Hillman SS; Drewes RC; Withers PC
    J Exp Biol; 2011 Oct; 214(Pt 19):3279-85. PubMed ID: 21900475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional roles for the compartmentalization of the subcutaneous lymphatic sacs in anuran amphibians.
    Hillman SS; Withers PC; Hedrick MS; Drewes RC
    Physiol Biochem Zool; 2005; 78(4):515-23. PubMed ID: 15957106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reprint of "Baroreflex function in anurans from different environments".
    Hedrick MS; McNew KA; Crossley DA
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Aug; 186():61-65. PubMed ID: 25843212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of vascular and interstitial compliance and vascular volume in the regulation of blood volume in two species of anuran.
    Hillman SS; Degrauw EA; Hoagland T; Hancock T; Withers P
    Physiol Biochem Zool; 2010; 83(1):55-67. PubMed ID: 19929686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lymph pools in the basement, sump pumps in the attic: the anuran dilemma for lymph movement.
    Hillman SS; Hedrick MS; Withers PC; Drewes RC
    Physiol Biochem Zool; 2004; 77(2):161-73. PubMed ID: 15095237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lung ventilation contributes to vertical lymph movement in anurans.
    Hedrick MS; Drewes RC; Hillman SS; Withers PC
    J Exp Biol; 2007 Nov; 210(Pt 22):3940-5. PubMed ID: 17981861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Baroreflex function in anurans from different environments.
    Hedrick MS; McNew KA; Crossley DA
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jan; 179():144-8. PubMed ID: 25447736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General function and endocrine control of the posterior lymph hearts in Bufo marinus and Rana catesbeiana.
    DeGrauw EA; Hillman SS
    Physiol Biochem Zool; 2004; 77(4):594-600. PubMed ID: 15449230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary compliance and lung volume are related to terrestriality in anuran amphibians.
    Withers PC; Hedrick MS; Drewes RC; Hillman SS
    Physiol Biochem Zool; 2014; 87(3):374-83. PubMed ID: 24769702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique role of skeletal muscle contraction in vertical lymph movement in anurans.
    Drewes RC; Hedrick MS; Hillman SS; Withers PC
    J Exp Biol; 2007 Nov; 210(Pt 22):3931-9. PubMed ID: 17981860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualising lymph movement in anuran amphibians with computed tomography.
    Hedrick MS; Hansen K; Wang T; Lauridsen H; Thygesen J; Pedersen M
    J Exp Biol; 2014 Sep; 217(Pt 17):2990-3. PubMed ID: 25165132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of blood volume following hypovolemic challenge in vertebrates: Transcapillary versus lymphatic mechanisms.
    Hillman SS; Drewes RC; Hedrick MS
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Apr; 254():110878. PubMed ID: 33358925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion.
    Wilson MP; Espinoza NR; Shah SR; Blob RW
    Anat Rec (Hoboken); 2009 Jul; 292(7):935-44. PubMed ID: 19548305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-body systemic transcapillary filtration rates, coefficients, and isogravimetric capillary pressures in Bufo marinus and Rana catesbeiana.
    Hancock TV; Hoagland TM; Hillman SS
    Physiol Biochem Zool; 2000; 73(2):161-8. PubMed ID: 10801394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anuran amphibians as comparative models for understanding extreme dehydration tolerance: a unique negative feedback lymphatic mechanism for blood volume regulation.
    Hillman SS
    Am J Physiol Regul Integr Comp Physiol; 2018 Oct; 315(4):R790-R798. PubMed ID: 29874095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isometric contractile properties of sexually dimorphic forelimb muscles in the marine toad Bufo marinus Linnaeus 1758: functional analysis and implications for amplexus.
    Lee Clark D; Peters SE
    J Exp Biol; 2006 Sep; 209(Pt 17):3448-56. PubMed ID: 16916980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of isometric contractile properties in hindlimb extensor muscles of the frogs Rana pipiens and Bufo marinus: functional correlations with differences in hopping performance.
    Chadwell BA; Hartwell HJ; Peters SE
    J Morphol; 2002 Mar; 251(3):309-22. PubMed ID: 11835367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of pulmocutaneous baroreceptors in the control of lymphatic heart rate in the toad Bufo marinus.
    Crossley DA; Hillman SS
    Physiol Biochem Zool; 1999; 72(1):109-15. PubMed ID: 9882609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.