BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21528148)

  • 21. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds.
    Schrand AM; Lin JB; Hens SC; Hussain SM
    Nanoscale; 2011 Feb; 3(2):435-45. PubMed ID: 20877788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photochemical functionalization of hydrogen-terminated diamond surfaces: a structural and mechanistic study.
    Nichols BM; Butler JE; Russell JN; Hamers RJ
    J Phys Chem B; 2005 Nov; 109(44):20938-47. PubMed ID: 16853714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanodiamonds as intracellular transporters of chemotherapeutic drug.
    Li J; Zhu Y; Li W; Zhang X; Peng Y; Huang Q
    Biomaterials; 2010 Nov; 31(32):8410-8. PubMed ID: 20692696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disulfide passivation of the Ge(100)-2 × 1 surface.
    Kachian JS; Tannaci J; Wright RJ; Tilley TD; Bent SF
    Langmuir; 2011 Jan; 27(1):179-86. PubMed ID: 21141841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping.
    Yang Z; Xia Y; Sun X; Mokaya R
    J Phys Chem B; 2006 Sep; 110(37):18424-31. PubMed ID: 16970467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface chemistry for stable and smart molecular and biomolecular interfaces via photochemical grafting of alkenes.
    Wang X; Landis EC; Franking R; Hamers RJ
    Acc Chem Res; 2010 Sep; 43(9):1205-15. PubMed ID: 20853906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface modification of chromatography adsorbents by low temperature low pressure plasma.
    Arpanaei A; Winther-Jensen B; Theodosiou E; Kingshott P; Hobley TJ; Thomas OR
    J Chromatogr A; 2010 Oct; 1217(44):6905-16. PubMed ID: 20869062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study.
    Brož A; Bačáková L; Štenclová P; Kromka A; Potocký Š
    Beilstein J Nanotechnol; 2017; 8():1649-1657. PubMed ID: 28875102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-energy electron scattering on deuterated nanocrystalline diamond films-a model system for understanding the interplay between density-of-states, excitation mechanisms and surface versus lattice contributions.
    Amiaud L; Martin I; Milosavljević AR; Michaelson Sh; Hoffman A; Azria R; Lafosse A
    Phys Chem Chem Phys; 2011 Jun; 13(24):11495-502. PubMed ID: 21594243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Made-to-order nanocarbons through deterministic plasma nanotechnology.
    Ren Y; Xu S; Rider AE; Ostrikov KK
    Nanoscale; 2011 Feb; 3(2):731-40. PubMed ID: 21079877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells.
    Vial S; Mansuy C; Sagan S; Irinopoulou T; Burlina F; Boudou JP; Chassaing G; Lavielle S
    Chembiochem; 2008 Sep; 9(13):2113-9. PubMed ID: 18677739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation.
    Zhang X; Yin J; Kang C; Li J; Zhu Y; Li W; Huang Q; Zhu Z
    Toxicol Lett; 2010 Oct; 198(2):237-43. PubMed ID: 20633617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of bulk impurity concentration on the reactivity of metal surface: sticking of hydrogen molecules and atoms to polycrystalline Nb containing oxygen.
    Hatano Y; Watanabe K; Livshits A; Busnyuk A; Alimov V; Nakamura Y; Hashizume K
    J Chem Phys; 2007 Nov; 127(20):204707. PubMed ID: 18052446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dangling bond-induced graphitization process on the (111) surface of diamond nanoparticles.
    Li LS; Zhao X
    J Chem Phys; 2011 Jan; 134(4):044711. PubMed ID: 21280789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multifunctional Surface Modification of Nanodiamonds Based on Dopamine Polymerization.
    Zeng Y; Liu W; Wang Z; Singamaneni S; Wang R
    Langmuir; 2018 Apr; 34(13):4036-4042. PubMed ID: 29528233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Are diamond nanoparticles cytotoxic?
    Schrand AM; Huang H; Carlson C; Schlager JJ; Omacr Sawa E; Hussain SM; Dai L
    J Phys Chem B; 2007 Jan; 111(1):2-7. PubMed ID: 17201422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen plasma interaction with (100) diamond surfaces.
    John P; Stoikou MD
    Phys Chem Chem Phys; 2011 Jun; 13(24):11503-10. PubMed ID: 21611639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regeneration of pyrolyzed photoresist film by heat treatment.
    Gross AJ; Downard AJ
    Anal Chem; 2011 Mar; 83(6):2397-402. PubMed ID: 21344943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films.
    Girard HA; Perruchas S; Gesset C; Chaigneau M; Vieille L; Arnault JC; Bergonzo P; Boilot JP; Gacoin T
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2738-46. PubMed ID: 20356151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation.
    Yang L; Sheldon BW; Webster TJ
    J Biomed Mater Res A; 2009 Nov; 91(2):548-56. PubMed ID: 18985788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.