These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21528634)

  • 1. Evaluation of activity monitors in manual wheelchair users with paraplegia.
    Hiremath SV; Ding D
    J Spinal Cord Med; 2011; 34(1):110-7. PubMed ID: 21528634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of activity monitors to estimate energy expenditure in manual wheelchair users.
    Hiremath SV; Ding D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():835-8. PubMed ID: 19964247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regression equations for RT3 activity monitors to estimate energy expenditure in manual wheelchair users.
    Hiremath SV; Ding D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7348-51. PubMed ID: 22256036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical activity classification utilizing SenseWear activity monitor in manual wheelchair users with spinal cord injury.
    Hiremath SV; Ding D; Farringdon J; Vyas N; Cooper RA
    Spinal Cord; 2013 Sep; 51(9):705-9. PubMed ID: 23689386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting energy expenditure of manual wheelchair users with spinal cord injury using a multisensor-based activity monitor.
    Hiremath SV; Ding D; Farringdon J; Cooper RA
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1937-43. PubMed ID: 22609119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of custom energy expenditure models for SenseWear armband in manual wheelchair users.
    Tsang K; Hiremath SV; Cooper RA; Ding D
    J Rehabil Res Dev; 2015; 52(7):793-803. PubMed ID: 26745837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System.
    Hiremath SV; Intille SS; Kelleher A; Cooper RA; Ding D
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1146-1153.e1. PubMed ID: 26976800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary study for the assessment of physical activity using a triaxial accelerometer with a gyro sensor on the upper limbs of subjects with paraplegia driving a wheelchair on a treadmill.
    Kiuchi K; Inayama T; Muraoka Y; Ikemoto S; Uemura O; Mizuno K
    Spinal Cord; 2014 Jul; 52(7):556-63. PubMed ID: 24819509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative validity of energy expenditure prediction algorithms using wearable devices for people with spinal cord injury.
    Shwetar YJ; Veerubhotla AL; Huang Z; Ding D
    Spinal Cord; 2020 Jul; 58(7):821-830. PubMed ID: 32020039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of Physical Activity Monitors for Estimating Energy Expenditure During Wheelchair Propulsion.
    Conger SA; Scott SN; Fitzhugh EC; Thompson DL; Bassett DR
    J Phys Act Health; 2015 Nov; 12(11):1520-6. PubMed ID: 25635408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of the Apple Watch Series 4 and Fitbit Versa for Assessing Energy Expenditure and Heart Rate of Wheelchair Users During Treadmill Wheelchair Propulsion: Cross-sectional Study.
    Danielsson ML; Vergeer M; Plasqui G; Baumgart JK
    JMIR Form Res; 2024 May; 8():e52312. PubMed ID: 38713497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting energy expenditure through hand rim propulsion power output in individuals who use wheelchairs.
    Conger SA; Scott SN; Bassett DR
    Br J Sports Med; 2014 Jul; 48(13):1048-53. PubMed ID: 24825852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.
    Learmonth YC; Kinnett-Hopkins D; Rice IM; Dysterheft JL; Motl RW
    Spinal Cord; 2016 Feb; 54(2):110-4. PubMed ID: 25777327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity of wearable activity monitors for tracking steps and estimating energy expenditure during a graded maximal treadmill test.
    Kendall B; Bellovary B; Gothe NP
    J Sports Sci; 2019 Jan; 37(1):42-49. PubMed ID: 29863968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal parameters estimation for wheelchair propulsion using wearable sensors.
    Ojeda M; Ding D
    Biomed Res Int; 2014; 2014():645284. PubMed ID: 25105133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of a multisensor armband in estimating 24-h energy expenditure in children.
    Dorminy CA; Choi L; Akohoue SA; Chen KY; Buchowski MS
    Med Sci Sports Exerc; 2008 Apr; 40(4):699-706. PubMed ID: 18317374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations.
    Lyden K; Kozey SL; Staudenmeyer JW; Freedson PS
    Eur J Appl Physiol; 2011 Feb; 111(2):187-201. PubMed ID: 20842375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Push-Rate Threshold for Physical Activity Intensity in Persons Who Use Manual Wheelchairs.
    Rice IM; Jeng B; Silveira SL; Motl RW
    Am J Phys Med Rehabil; 2021 Mar; 100(3):292-296. PubMed ID: 33048893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of experience on the energy cost of wheelchair propulsion.
    Croft L; Lenton J; Tolfrey K; Goosey-Tolfrey V
    Eur J Phys Rehabil Med; 2013 Dec; 49(6):865-73. PubMed ID: 23558701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.