These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
755 related articles for article (PubMed ID: 21528865)
1. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Kievit FM; Zhang M Acc Chem Res; 2011 Oct; 44(10):853-62. PubMed ID: 21528865 [TBL] [Abstract][Full Text] [Related]
2. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Tassa C; Shaw SY; Weissleder R Acc Chem Res; 2011 Oct; 44(10):842-52. PubMed ID: 21661727 [TBL] [Abstract][Full Text] [Related]
3. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Bakhtiary Z; Saei AA; Hajipour MJ; Raoufi M; Vermesh O; Mahmoudi M Nanomedicine; 2016 Feb; 12(2):287-307. PubMed ID: 26707817 [TBL] [Abstract][Full Text] [Related]
4. Surface activation and targeting strategies of superparamagnetic iron oxide nanoparticles in cancer-oriented diagnosis and therapy. Lin MM; Kim HH; Kim H; Dobson J; Kim DK Nanomedicine (Lond); 2010 Jan; 5(1):109-33. PubMed ID: 20025469 [TBL] [Abstract][Full Text] [Related]
5. Theranostic Nanoparticles for RNA-Based Cancer Treatment. Revia RA; Stephen ZR; Zhang M Acc Chem Res; 2019 Jun; 52(6):1496-1506. PubMed ID: 31135134 [TBL] [Abstract][Full Text] [Related]
6. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Dadfar SM; Roemhild K; Drude NI; von Stillfried S; Knüchel R; Kiessling F; Lammers T Adv Drug Deliv Rev; 2019 Jan; 138():302-325. PubMed ID: 30639256 [TBL] [Abstract][Full Text] [Related]
7. Multifunctional polymeric nanoparticles doubly loaded with SPION and ceftiofur retain their physical and biological properties. Solar P; González G; Vilos C; Herrera N; Juica N; Moreno M; Simon F; Velásquez L J Nanobiotechnology; 2015 Feb; 13():14. PubMed ID: 25886018 [TBL] [Abstract][Full Text] [Related]
8. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Huang G; Chen H; Dong Y; Luo X; Yu H; Moore Z; Bey EA; Boothman DA; Gao J Theranostics; 2013; 3(2):116-26. PubMed ID: 23423156 [TBL] [Abstract][Full Text] [Related]
9. Heparin-Superparamagnetic Iron Oxide Nanoparticles for Theranostic Applications. Massironi N; Colombo M; Cosentino C; Fiandra L; Mauri M; Kayal Y; Testa F; Torri G; Urso E; Vismara E; Vlodavsky I Molecules; 2022 Oct; 27(20):. PubMed ID: 36296711 [TBL] [Abstract][Full Text] [Related]
10. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Laurent S; Saei AA; Behzadi S; Panahifar A; Mahmoudi M Expert Opin Drug Deliv; 2014 Sep; 11(9):1449-70. PubMed ID: 24870351 [TBL] [Abstract][Full Text] [Related]
12. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Sakulkhu U; Mahmoudi M; Maurizi L; Coullerez G; Hofmann-Amtenbrink M; Vries M; Motazacker M; Rezaee F; Hofmann H Biomater Sci; 2015 Feb; 3(2):265-78. PubMed ID: 26218117 [TBL] [Abstract][Full Text] [Related]
13. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. Poller JM; Zaloga J; Schreiber E; Unterweger H; Janko C; Radon P; Eberbeck D; Trahms L; Alexiou C; Friedrich RP Int J Nanomedicine; 2017; 12():3207-3220. PubMed ID: 28458541 [TBL] [Abstract][Full Text] [Related]
14. Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Lam T; Pouliot P; Avti PK; Lesage F; Kakkar AK Adv Colloid Interface Sci; 2013 Nov; 199-200():95-113. PubMed ID: 23891347 [TBL] [Abstract][Full Text] [Related]
15. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Zhi D; Yang T; Yang J; Fu S; Zhang S Acta Biomater; 2020 Jan; 102():13-34. PubMed ID: 31759124 [TBL] [Abstract][Full Text] [Related]
16. Preparation, Characterization, and In Vitro pH-sensitivity Evaluation of Superparamagnetic Iron Oxide Nanoparticle- Misonidazole pH-sensitive Liposomes. Li B; Li B; He D; Feng C; Luo Z; He M Curr Drug Deliv; 2019; 16(3):254-267. PubMed ID: 30426901 [TBL] [Abstract][Full Text] [Related]
17. Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Zhuo Z; Wang J; Luo Y; Zeng R; Zhang C; Zhou W; Guo K; Wu H; Sha W; Chen H Acta Biomater; 2021 Oct; 134():13-31. PubMed ID: 34284151 [TBL] [Abstract][Full Text] [Related]
18. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Xie J; Liu G; Eden HS; Ai H; Chen X Acc Chem Res; 2011 Oct; 44(10):883-92. PubMed ID: 21548618 [TBL] [Abstract][Full Text] [Related]
19. Role of Surface Chemistry in Mediating the Uptake of Ultrasmall Iron Oxide Nanoparticles by Cancer Cells. Narkhede AA; Sherwood JA; Antone A; Coogan KR; Bolding MS; Deb S; Bao Y; Rao SS ACS Appl Mater Interfaces; 2019 May; 11(19):17157-17166. PubMed ID: 31017392 [TBL] [Abstract][Full Text] [Related]