BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21528911)

  • 1. Predicting fragment binding poses using a combined MCSS MM-GBSA approach.
    Haider MK; Bertrand HO; Hubbard RE
    J Chem Inf Model; 2011 May; 51(5):1092-105. PubMed ID: 21528911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM; Degliesposti G; Sgobba M; Rastelli G
    Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations.
    Misini Ignjatović M; Caldararu O; Dong G; Muñoz-Gutierrez C; Adasme-Carreño F; Ryde U
    J Comput Aided Mol Des; 2016 Sep; 30(9):707-730. PubMed ID: 27565797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
    Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM
    J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of estrogen receptor β ligands potency and selectivity by docking and MM-GBSA scoring methods using three different scaffolds.
    Balaji B; Ramanathan M
    J Enzyme Inhib Med Chem; 2012 Dec; 27(6):832-44. PubMed ID: 21999568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking.
    Chen F; Liu H; Sun H; Pan P; Li Y; Li D; Hou T
    Phys Chem Chem Phys; 2016 Aug; 18(32):22129-39. PubMed ID: 27444142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the performance of MM/PBSA and MM/GBSA methods. 10. Prediction reliability of binding affinities and binding poses for RNA-ligand complexes.
    Jiang D; Du H; Zhao H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wang E; Hou T; Hsieh CY
    Phys Chem Chem Phys; 2024 Mar; 26(13):10323-10335. PubMed ID: 38501198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock.
    Cleves AE; Jain AN
    J Comput Aided Mol Des; 2015 Jun; 29(6):485-509. PubMed ID: 25940276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Docking and MM/GBSA Rescoring Study of Ligand Recognition upon Binding Antithrombin.
    Zhang X; Perez-Sanchez H; Lightstone FC
    Curr Top Med Chem; 2017; 17(14):1631-1639. PubMed ID: 27852201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating replacement free energy of binding-site waters in molecular docking.
    Sun H; Zhao L; Peng S; Huang N
    Proteins; 2014 Sep; 82(9):1765-76. PubMed ID: 24549784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postprocessing of docked protein-ligand complexes using implicit solvation models.
    Lindström A; Edvinsson L; Johansson A; Andersson CD; Andersson IE; Raubacher F; Linusson A
    J Chem Inf Model; 2011 Feb; 51(2):267-82. PubMed ID: 21309544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the full potential of flexible receptor docking using multiple crystallographic structures.
    Barril X; Morley SD
    J Med Chem; 2005 Jun; 48(13):4432-43. PubMed ID: 15974595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Case-specific performance of MM-PBSA, MM-GBSA, and SIE in virtual screening.
    Virtanen SI; Niinivehmas SP; Pentikäinen OT
    J Mol Graph Model; 2015 Nov; 62():303-318. PubMed ID: 26550792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors.
    Cavasotto CN; Orry AJ; Abagyan RA
    Proteins; 2003 May; 51(3):423-33. PubMed ID: 12696053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved docking of polypeptides with Glide.
    Tubert-Brohman I; Sherman W; Repasky M; Beuming T
    J Chem Inf Model; 2013 Jul; 53(7):1689-99. PubMed ID: 23800267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.