These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21528912)

  • 1. Membrane topology of the colicin E1 channel using genetically encoded fluorescence.
    Ho D; Lugo MR; Lomize AL; Pogozheva ID; Singh SP; Schwan AL; Merrill AR
    Biochemistry; 2011 Jun; 50(22):4830-42. PubMed ID: 21528912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tilted, extended, and lying in wait: the membrane-bound topology of residues Lys-381-Ser-405 of the colicin E1 channel domain.
    Wei Z; White D; Wang J; Musse AA; Merrill AR
    Biochemistry; 2007 May; 46(20):6074-85. PubMed ID: 17455912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary events in the colicin translocon: FRET analysis of colicin unfolding initiated by binding to BtuB and OmpF.
    Zakharov SD; Sharma O; Zhalnina MV; Cramer WA
    Biochemistry; 2008 Dec; 47(48):12802-9. PubMed ID: 18986168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unfolding pathway of the colicin E1 channel protein on a membrane surface.
    Lindeberg M; Zakharov SD; Cramer WA
    J Mol Biol; 2000 Jan; 295(3):679-92. PubMed ID: 10623556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topology of the amphipathic helices of the colicin A pore-forming domain in E. coli lipid membranes studied by pulse EPR.
    Böhme S; Padmavathi PV; Holterhues J; Ouchni F; Klare JP; Steinhoff HJ
    Phys Chem Chem Phys; 2009 Aug; 11(31):6770-7. PubMed ID: 19639151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolving the 3D spatial orientation of helix I in the closed state of the colicin E1 channel domain by FRET. Insights into the integration mechanism.
    Lugo MR; Ho D; Merrill AR
    Arch Biochem Biophys; 2016 Oct; 608():52-73. PubMed ID: 27596846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the amphipathic nature and tilted topology of helices 4 and 5 in the closed state of the colicin E1 channel.
    Ho D; Merrill AR
    Biochemistry; 2009 Feb; 48(6):1369-80. PubMed ID: 19159330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein.
    Zakharov SD; Lindeberg M; Cramer WA
    Biochemistry; 1999 Aug; 38(35):11325-32. PubMed ID: 10471282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1.
    Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C
    Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation of the closed channel state of colicin A in proteoliposomes: an umbrella model.
    Padmavathi PV; Steinhoff HJ
    J Mol Biol; 2008 Apr; 378(1):204-14. PubMed ID: 18353363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers.
    Lambotte S; Jasperse P; Bechinger B
    Biochemistry; 1998 Jan; 37(1):16-22. PubMed ID: 9453746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR.
    Luo W; Yao X; Hong M
    J Am Chem Soc; 2005 May; 127(17):6402-8. PubMed ID: 15853348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain.
    White D; Musse AA; Wang J; London E; Merrill AR
    J Biol Chem; 2006 Oct; 281(43):32375-84. PubMed ID: 16854987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-terminal half of the colicin A pore-forming domain is active in vivo and in vitro.
    Nardi A; Slatin SL; Baty D; Duché D
    J Mol Biol; 2001 Apr; 307(5):1293-303. PubMed ID: 11292342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of anionic lipid and ion concentrations on the topology and segmental mobility of colicin Ia channel domain from solid-state NMR.
    Yao XL; Hong M
    Biochemistry; 2006 Jan; 45(1):289-95. PubMed ID: 16388605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
    Elkins P; Bunker A; Cramer WA; Stauffacher CV
    Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of colicin Ia.
    Wiener M; Freymann D; Ghosh P; Stroud RM
    Nature; 1997 Jan; 385(6615):461-4. PubMed ID: 9009197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harmonic analysis of the fluorescence response of bimane adducts of colicin E1 at helices 6, 7, and 10.
    Ho D; Lugo MR; Merrill AR
    J Biol Chem; 2013 Feb; 288(7):5136-48. PubMed ID: 23264635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
    Kim Y; Valentine K; Opella SJ; Schendel SL; Cramer WA
    Protein Sci; 1998 Feb; 7(2):342-8. PubMed ID: 9521110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.