These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21528981)

  • 41. The role of conformation in ion permeation in a K+ channel.
    Domene C; Vemparala S; Furini S; Sharp K; Klein ML
    J Am Chem Soc; 2008 Mar; 130(11):3389-98. PubMed ID: 18293969
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Digitalized K(+) Occupancy in the Nanocavity Holds and Releases Queues of K(+) in a Channel.
    Sumikama T; Oiki S
    J Am Chem Soc; 2016 Aug; 138(32):10284-92. PubMed ID: 27454924
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potassium current in the squid giant axon.
    Clay JR
    Int Rev Neurobiol; 1985; 27():363-84. PubMed ID: 2417975
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling ion permeation through batrachotoxin-modified Na+ channels from rat skeletal muscle with a multi-ion pore.
    Ravindran A; Kwiecinski H; Alvarez O; Eisenman G; Moczydlowski E
    Biophys J; 1992 Feb; 61(2):494-508. PubMed ID: 1312366
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Zn2(+)-induced subconductance events in cardiac Na+ channels prolonged by batrachotoxin. Current-voltage behavior and single-channel kinetics.
    Schild L; Ravindran A; Moczydlowski E
    J Gen Physiol; 1991 Jan; 97(1):117-42. PubMed ID: 1848882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory.
    Im W; Roux B
    J Mol Biol; 2002 Sep; 322(4):851-69. PubMed ID: 12270719
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels.
    Nieves-Cordones M; Gaillard I
    Plant Signal Behav; 2014; 9(10):e972892. PubMed ID: 25482770
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Atomistic modeling and molecular dynamics analysis of human Ca
    Feng T; Kalyaanamoorthy S; Ganesan A; Barakat K
    Biochim Biophys Acta Gen Subj; 2019 Jun; 1863(6):1116-1126. PubMed ID: 30978379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Status of the intracellular gate in the activated-not-open state of shaker K+ channels.
    del Camino D; Kanevsky M; Yellen G
    J Gen Physiol; 2005 Nov; 126(5):419-28. PubMed ID: 16260836
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ion conduction through the hERG potassium channel.
    Ceccarini L; Masetti M; Cavalli A; Recanatini M
    PLoS One; 2012; 7(11):e49017. PubMed ID: 23133669
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An extracellular Cu2+ binding site in the voltage sensor of BK and Shaker potassium channels.
    Ma Z; Wong KY; Horrigan FT
    J Gen Physiol; 2008 May; 131(5):483-502. PubMed ID: 18443360
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Voltage-dependence of ion permeation in cyclic GMP-gated ion channels is optimized for cell function in rod and cone photoreceptors.
    Ohyama T; Picones A; Korenbrot JI
    J Gen Physiol; 2002 Apr; 119(4):341-54. PubMed ID: 11929885
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An ion's view of the potassium channel. The structure of the permeation pathway as sensed by a variety of blocking ions.
    French RJ; Shoukimas JJ
    J Gen Physiol; 1985 May; 85(5):669-98. PubMed ID: 2582077
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Domain and interdomain energetics underlying gating in Shaker-type Kv channels.
    Peyser A; Gillespie D; Roth R; Nonner W
    Biophys J; 2014 Oct; 107(8):1841-1852. PubMed ID: 25418165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations?
    Tarek M; Delemotte L
    Acc Chem Res; 2013 Dec; 46(12):2755-62. PubMed ID: 23697886
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A physical model of potassium channel activation: from energy landscape to gating kinetics.
    Sigg D; Bezanilla F
    Biophys J; 2003 Jun; 84(6):3703-16. PubMed ID: 12770877
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-Dielectric Brownian Dynamics and Design-Space-Exploration Studies of Permeation in Ion Channels.
    Siksik M; Krishnamurthy V
    IEEE Trans Nanobioscience; 2017 Sep; 16(6):476-490. PubMed ID: 28692982
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The conserved phenylalanine in the K+ channel voltage-sensor domain creates a barrier with unidirectional effects.
    Schwaiger CS; Liin SI; Elinder F; Lindahl E
    Biophys J; 2013 Jan; 104(1):75-84. PubMed ID: 23332060
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Brownian dynamics study of a multiply-occupied cation channel: application to understanding permeation in potassium channels.
    Bek S; Jakobsson E
    Biophys J; 1994 Apr; 66(4):1028-38. PubMed ID: 7518703
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determinants of voltage-dependent gating and open-state stability in the S5 segment of Shaker potassium channels.
    Kanevsky M; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):215-42. PubMed ID: 10435999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.