These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21529009)

  • 1. Piezoresistive cantilever force-clamp system.
    Park SJ; Petzold BC; Goodman MB; Pruitt BL
    Rev Sci Instrum; 2011 Apr; 82(4):043703. PubMed ID: 21529009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of nematode mechanics by piezoresistive displacement clamp.
    Park SJ; Goodman MB; Pruitt BL
    Proc Natl Acad Sci U S A; 2007 Oct; 104(44):17376-81. PubMed ID: 17962419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments.
    Sevim S; Shamsudhin N; Ozer S; Feng L; Fakhraee A; Ergeneman O; Pané S; Nelson BJ; Torun H
    Sci Rep; 2016 Jun; 6():27567. PubMed ID: 27273214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEMS-based force-clamp analysis of the role of body stiffness in C. elegans touch sensation.
    Petzold BC; Park SJ; Mazzochette EA; Goodman MB; Pruitt BL
    Integr Biol (Camb); 2013 Jun; 5(6):853-64. PubMed ID: 23598612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force microscope based biomolecular force-clamp measurements using a micromachined electrostatic actuator.
    Torun H; Finkler O; Degertekin FL
    Ultramicroscopy; 2012 Nov; 122():26-31. PubMed ID: 22960003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Faster than the speed of hearing: nanomechanical force probes enable the electromechanical observation of cochlear hair cells.
    Doll JC; Peng AW; Ricci AJ; Pruitt BL
    Nano Lett; 2012 Dec; 12(12):6107-11. PubMed ID: 23181721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor.
    Xie H; Vitard J; Haliyo S; Régnier S; Boukallel M
    Rev Sci Instrum; 2008 Mar; 79(3):033708. PubMed ID: 18377016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-sensing force control of a piezoelectric actuator.
    Badel A; Qiu J; Nakano T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Dec; 55(12):2571-81. PubMed ID: 19126482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of tip-to-sample distance in atomic force microscopy: a dual-actuator tip-motion control scheme.
    Jeong Y; Jayanth GR; Menq CH
    Rev Sci Instrum; 2007 Sep; 78(9):093706. PubMed ID: 17902954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast on-wafer electrical, mechanical, and electromechanical characterization of piezoresistive cantilever force sensors.
    Tosolini G; Villanueva LG; Perez-Murano F; Bausells J
    Rev Sci Instrum; 2012 Jan; 83(1):015002. PubMed ID: 22299978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An AFM-based stiffness clamp for dynamic control of rigidity.
    Webster KD; Crow A; Fletcher DA
    PLoS One; 2011 Mar; 6(3):e17807. PubMed ID: 21408137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy.
    Rosenberger MR; Chen S; Prater CB; King WP
    Nanotechnology; 2017 Jan; 28(4):044003. PubMed ID: 28000611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-bandwidth multimode self-sensing in bimodal atomic force microscopy.
    Ruppert MG; Moheimani SO
    Beilstein J Nanotechnol; 2016; 7():284-95. PubMed ID: 26977385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and analysis of four-jaws microgripper with integrated thermal actuator and force sensor for biomedical applications.
    Saba R; Iqbal S; Shakoor RI; Saleem MM; Bazaz SA
    Rev Sci Instrum; 2021 Apr; 92(4):045007. PubMed ID: 34243476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast nanotopography imaging using a high speed cantilever with integrated heater-thermometer.
    Lee B; Somnath S; King WP
    Nanotechnology; 2013 Apr; 24(13):135501. PubMed ID: 23478235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator.
    Srinivasan K; Miao H; Rakher MT; Davanço M; Aksyuk V
    Nano Lett; 2011 Feb; 11(2):791-7. PubMed ID: 21250747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Dynamic Hysteresis Model and Nonlinear Control System for a Structure-Integrated Piezoelectric Sensor-Actuator.
    Shan X; Song H; Cao H; Zhang L; Zhao X; Fan J
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed dynamic atomic force microscopy by using a Q-controlled cantilever eigenmode as an actuator.
    Balantekin M
    Ultramicroscopy; 2015 Feb; 149():45-50. PubMed ID: 25436928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microactuator device for integrated measurement of epithelium mechanics.
    Mukundan V; Nelson WJ; Pruitt BL
    Biomed Microdevices; 2013 Feb; 15(1):117-23. PubMed ID: 22927158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and optimization of in-plane actuator driven cantilever with high sensitivity sensors.
    Chen X; Lee DW
    J Nanosci Nanotechnol; 2010 May; 10(5):3236-40. PubMed ID: 20358930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.