These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21529022)

  • 1. Fiber-coupled laser-driven flyer plates system.
    Zhao XH; Zhao X; Shan GC; Gao Y
    Rev Sci Instrum; 2011 Apr; 82(4):043904. PubMed ID: 21529022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-driven flyer plates for shock compression science: launch and target impact probed by photon Doppler velocimetry.
    Curtis AD; Banishev AA; Shaw WL; Dlott DD
    Rev Sci Instrum; 2014 Apr; 85(4):043908. PubMed ID: 24784627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplified laser-driven flyer plates for shock compression science.
    Brown KE; Shaw WL; Zheng X; Dlott DD
    Rev Sci Instrum; 2012 Oct; 83(10):103901. PubMed ID: 23126776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments.
    Zhang X; Wang G; Zhao J; Tan F; Luo B; Sun C
    Rev Sci Instrum; 2014 May; 85(5):055110. PubMed ID: 24880418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments.
    Wang G; He J; Zhao J; Tan F; Sun C; Mo J; Xong X; Wu G
    Rev Sci Instrum; 2011 Sep; 82(9):095105. PubMed ID: 21974617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma-accelerated flyer-plates for equation of state studies.
    Fratanduono DE; Smith RF; Boehly TR; Eggert JH; Braun DG; Collins GW
    Rev Sci Instrum; 2012 Jul; 83(7):073504. PubMed ID: 22852692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-energy flat-top beams for laser launching using a Gaussian mirror.
    Fujiwara H; Brown KE; Dlott DD
    Appl Opt; 2010 Jul; 49(19):3723-31. PubMed ID: 20648138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Energy Conversion Efficiency of a Laser-Driven Flyer by an In Situ-Fabricated Nano-absorption Layer.
    Wang L; Yan Y; Ji X; Zhang W; Jiang H; Qin W; Wang Y; Tang D
    Nanoscale Res Lett; 2020 Jun; 15(1):125. PubMed ID: 32504409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shock experiments and numerical simulations on low energy portable electrically exploding foil accelerators.
    Saxena AK; Kaushik TC; Gupta SC
    Rev Sci Instrum; 2010 Mar; 81(3):033508. PubMed ID: 20370178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect ignition of energetic materials with laser-driven flyer plates.
    Dean SW; De Lucia FC; Gottfried JL
    Appl Opt; 2017 Jan; 56(3):B134-B141. PubMed ID: 28157876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of Step-Shaped Laser-Driven Flyers on Fiber End Face Based on a Ti/Al Ablation Layer.
    Yuan H; Geng Y; Wang X; Wu L; Shen R
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):5326-5335. PubMed ID: 38240607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.
    Paisley DL; Luo SN; Greenfield SR; Koskelo AC
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023902. PubMed ID: 18315311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.
    Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY
    Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments.
    Wang G; Sun C; Tan F; Zhao J; Zhang N; Liu C; Mo J; Wang G; Wang X
    Rev Sci Instrum; 2008 May; 79(5):053904. PubMed ID: 18513076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser.
    Weng J; Wang X; Ma Y; Tan H; Cai L; Li J; Liu C
    Rev Sci Instrum; 2008 Nov; 79(11):113101. PubMed ID: 19045883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic simulation of hypervelocity generation by multidimensional graded impactors: Planarity enhancement study.
    Guo C; Li L; Chen H; Zhang R; Bai J; Shen Q; Zhang L; Luo G
    Heliyon; 2023 Mar; 9(3):e13704. PubMed ID: 36915499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precisely Controlled Reactive Multilayer Films with Excellent Energy Release Property for Laser-Induced Ignition.
    Guo W; Chang S; Cao J; Wu L; Shen R; Ye Y
    Nanoscale Res Lett; 2019 Aug; 14(1):301. PubMed ID: 31468257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High strain rate metalworking with vaporizing foil actuator: control of flyer velocity by varying input energy and foil thickness.
    Vivek A; Hansen SR; Daehn GS
    Rev Sci Instrum; 2014 Jul; 85(7):075101. PubMed ID: 25085167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical fiber link for transmission of 1-nJ femtosecond laser pulses at 1550 nm.
    Eichhorn F; Olsson RK; Buron JC; Grüner-Nielsen L; Pedersen JE; Jepsen PU
    Opt Express; 2010 Mar; 18(7):6978-87. PubMed ID: 20389717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of excimer laser (308 nm) ablation of the human lens nucleus in air and saline with a fiber optic delivery system.
    Martinez M; Maguen E; Bardenstein D; Duffy M; Yoser S; Papaioannou T; Grundfest W
    Refract Corneal Surg; 1992; 8(5):368-74. PubMed ID: 1450118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.