BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 21529449)

  • 1. Effects of drag-reducing polymers on microcirculation of normal rat hindlimb skeletal muscle.
    Feng H; Dao-gang C; Xiang-hui C; Rong-sheng DU; Bing-jie Z; Yi-li L
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2011 Apr; 33(2):189-93. PubMed ID: 21529449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of the microcirculation in the acute ischemic rat limb during intravenous infusion of drag-reducing polymers.
    Hu F; Zha D; Du R; Chen X; Zhou B; Xiu J; Bin J; Liu Y
    Biorheology; 2011; 48(3-4):149-59. PubMed ID: 22156030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of polyethylene oxide on red blood cell velocity in rat cremaster microcirculation].
    Du RS; Zha DG; Zhou BJ; Hu F; Ji LJ; Wu JF; Bin JP; Liu YL
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 May; 30(5):960-2. PubMed ID: 20501367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drag-reducing polymers increase exercise tolerance in an ischemic hind-limb rat model.
    Zhang Q; Deng Y; Zhang W; Liu Y; Zha D
    Vascular; 2016 Jun; 24(3):241-5. PubMed ID: 26092832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drag-reducing polyethylene oxide improves microcirculation after hemorrhagic shock.
    Zeng Z; Zhang Q; Gao Y; Li T; Dai X; Huang Q; Chen Z
    J Surg Res; 2016 May; 202(1):118-25. PubMed ID: 27083957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vasopressin attenuates TNF-mediated inflammation in the rat cremaster microcirculation.
    McMahon PJ; Proctor KG
    J Trauma; 2009 Sep; 67(3):461-73; discussion 473-5. PubMed ID: 19741386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of polyethylene oxide at different concentrations on abdominal aortic blood flow and vascular resistance in rats].
    Hu F; DU RS; Zha DG; Chen XH; Li SH; Zhou BJ; Liu YL
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 Apr; 30(4):884-7. PubMed ID: 20423873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery.
    Schroth M; Plank C; Meissner U; Eberle KP; Weyand M; Cesnjevar R; Dötsch J; Rascher W
    Pediatrics; 2006 Jul; 118(1):e76-84. PubMed ID: 16751617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of microbubble cavitation on microcirculation of rat skeletal muscle].
    Huang WF; Xiu JC; Zhou BY; Zha DG; Bin JP; Zeng P; Liu YL
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 Dec; 26(12):1690-3. PubMed ID: 17259098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin increases blood flow rate in the microvasculature of cremaster muscle of the anesthetized rats.
    Iwashita S; Yanagi K; Ohshima N; Suzuki M
    In Vivo; 2001; 15(1):11-5. PubMed ID: 11286121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of polyethylene oxide on blood perfusion in the hind limbs of rats with chronic hindlimb ischemia].
    Zheng DZ; Zhou T; Zha DG
    Nan Fang Yi Ke Da Xue Xue Bao; 2017 Jan; 37(1):113-118. PubMed ID: 28109110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the microcirculation and the state of oxidative stress in the rat after scorpion envenomation.
    Sahnoun Z; Chaker-Krichen S; Kassis M; Hakim A; Hammami S; Ghozzi H; Bouayed N; Bellasfar Z; Zeghal KM; Rebai T
    Clin Exp Pharmacol Physiol; 2007 Apr; 34(4):263-8. PubMed ID: 17324135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermittent pneumatic compression of legs increases microcirculation in distant skeletal muscle.
    Liu K; Chen LE; Seaber AV; Johnson GW; Urbaniak JR
    J Orthop Res; 1999 Jan; 17(1):88-95. PubMed ID: 10073652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of pretreatment with ischaemic preconditioning or cromakalim on perfusion in skeletal muscle during ischaemia-reperfusion injury.
    Seifalian AM; Chaloupka K; Lohn JW; Gürke L; Heberer M; Hamilton G
    Int Angiol; 2001 Jun; 20(2):174-80. PubMed ID: 11533526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats.
    Ross RM; Wadley GD; Clark MG; Rattigan S; McConell GK
    Diabetes; 2007 Dec; 56(12):2885-92. PubMed ID: 17881613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia.
    Tang GL; Chang DS; Sarkar R; Wang R; Messina LM
    J Vasc Surg; 2005 Feb; 41(2):312-20. PubMed ID: 15768015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibiting nitric oxide overproduction during hypotensive sepsis increases local oxygen consumption in rat skeletal muscle.
    Bateman RM; Sharpe MD; Goldman D; Lidington D; Ellis CG
    Crit Care Med; 2008 Jan; 36(1):225-31. PubMed ID: 18090362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute remote ischemic preconditioning II: the role of nitric oxide.
    Küntscher MV; Kastell T; Altmann J; Menke H; Gebhard MM; Germann G
    Microsurgery; 2002; 22(6):227-31. PubMed ID: 12375287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparable effects of arteriolar and capillary stimuli on blood flow in rat skeletal muscle.
    Mitchell D; Yu J; Tyml K
    Microvasc Res; 1997 Jan; 53(1):22-32. PubMed ID: 9056473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent effects of microspheres on vasoconstrictor-mediated change in oxygen uptake by perfused rat hindlimb.
    Vincent MA; Rattigan S; Clark MG
    Microvasc Res; 2001 Nov; 62(3):306-14. PubMed ID: 11678633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.