These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 21529604)
1. Production of low cost microfluidic chips by a "shrinking" approach: applications to emulsion and microparticle production. Capretto L; Focaroli S; Zhang XL; Mazzitelli S; Nastruzzi C J Control Release; 2010 Nov; 148(1):e26-8. PubMed ID: 21529604 [No Abstract] [Full Text] [Related]
2. Preparation and validation of low cost microfluidic chips using a shrinking approach. Focaroli S; Mazzitelli S; Falconi M; Luca G; Nastruzzi C Lab Chip; 2014 Oct; 14(20):4007-16. PubMed ID: 25144915 [TBL] [Abstract][Full Text] [Related]
3. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications. Lin YH; Chen CT; Huang LL; Lee GB Biomed Microdevices; 2007 Dec; 9(6):833-43. PubMed ID: 17577672 [TBL] [Abstract][Full Text] [Related]
4. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches. Lai CW; Lin YH; Lee GB Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic "thin chips" for chemical separations. Gaspar A; Salgado M; Stevens S; Gomez FA Electrophoresis; 2010 Aug; 31(15):2520-5. PubMed ID: 20603825 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of polymersomes using double-emulsion templates in glass-coated stamped microfluidic devices. Thiele J; Abate AR; Shum HC; Bachtler S; Förster S; Weitz DA Small; 2010 Aug; 6(16):1723-7. PubMed ID: 20665757 [No Abstract] [Full Text] [Related]
8. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Fidalgo LM; Whyte G; Bratton D; Kaminski CF; Abell C; Huck WT Angew Chem Int Ed Engl; 2008; 47(11):2042-5. PubMed ID: 18264960 [No Abstract] [Full Text] [Related]
9. DEP actuation of emulsion jets and dispensing of sub-nanoliter emulsion droplets. Prakash R; Kaler KV Lab Chip; 2009 Oct; 9(19):2836-44. PubMed ID: 19967122 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Nisisako T; Torii T Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668 [TBL] [Abstract][Full Text] [Related]
11. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices. Hartmann DM; Nevill JT; Pettigrew KI; Votaw G; Kung PJ; Crenshaw HC Lab Chip; 2008 Apr; 8(4):609-16. PubMed ID: 18369517 [TBL] [Abstract][Full Text] [Related]
12. A low-cost, low-power consumption, miniature laser-induced fluorescence system for DNA detection on a microfluidic device. Shrinivasan S; Norris PM; Landers JP; Ferrance JP Clin Lab Med; 2007 Mar; 27(1):173-81. PubMed ID: 17416310 [TBL] [Abstract][Full Text] [Related]
13. Shrink film patterning by craft cutter: complete plastic chips with high resolution/high-aspect ratio channel. Taylor D; Dyer D; Lew V; Khine M Lab Chip; 2010 Sep; 10(18):2472-5. PubMed ID: 20680207 [TBL] [Abstract][Full Text] [Related]
14. Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions. Kobayashi I; Mukataka S; Nakajima M Langmuir; 2005 Aug; 21(17):7629-32. PubMed ID: 16089362 [TBL] [Abstract][Full Text] [Related]
15. Thread as a versatile material for low-cost microfluidic diagnostics. Li X; Tian J; Shen W ACS Appl Mater Interfaces; 2010 Jan; 2(1):1-6. PubMed ID: 20356211 [TBL] [Abstract][Full Text] [Related]
16. Designed pneumatic valve actuators for controlled droplet breakup and generation. Choi JH; Lee SK; Lim JM; Yang SM; Yi GR Lab Chip; 2010 Feb; 10(4):456-61. PubMed ID: 20126685 [TBL] [Abstract][Full Text] [Related]
17. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Chen Y; Zhang L; Chen G Electrophoresis; 2008 May; 29(9):1801-14. PubMed ID: 18384069 [TBL] [Abstract][Full Text] [Related]
18. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips. Gui L; Ren CL Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592 [TBL] [Abstract][Full Text] [Related]
19. "Print-n-Shrink" technology for the rapid production of microfluidic chips and protein microarrays. Sollier K; Mandon CA; Heyries KA; Blum LJ; Marquette CA Lab Chip; 2009 Dec; 9(24):3489-94. PubMed ID: 20024027 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of composite emulsions and complex foams with the use of microfluidic flow-focusing devices. Hashimoto M; Garstecki P; Whitesides GM Small; 2007 Oct; 3(10):1792-802. PubMed ID: 17890646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]