These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 21529612)

  • 1. In vitro evaluation of the stability of proline-specific endopeptidases under simulated gastrointestinal conditions.
    Fuhrmann G; Leroux JC
    J Control Release; 2010 Nov; 148(1):e37-9. PubMed ID: 21529612
    [No Abstract]   [Full Text] [Related]  

  • 2. Fermentation, purification, formulation, and pharmacological evaluation of a prolyl endopeptidase from Myxococcus xanthus: implications for Celiac Sprue therapy.
    Gass J; Ehren J; Strohmeier G; Isaacs I; Khosla C
    Biotechnol Bioeng; 2005 Dec; 92(6):674-84. PubMed ID: 16136593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease.
    Stepniak D; Spaenij-Dekking L; Mitea C; Moester M; de Ru A; Baak-Pablo R; van Veelen P; Edens L; Koning F
    Am J Physiol Gastrointest Liver Physiol; 2006 Oct; 291(4):G621-9. PubMed ID: 16690904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue.
    Gass J; Bethune MT; Siegel M; Spencer A; Khosla C
    Gastroenterology; 2007 Aug; 133(2):472-80. PubMed ID: 17681168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein engineering of improved prolyl endopeptidases for celiac sprue therapy.
    Ehren J; Govindarajan S; Morón B; Minshull J; Khosla C
    Protein Eng Des Sel; 2008 Dec; 21(12):699-707. PubMed ID: 18836204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase.
    Alvarez-Sieiro P; Martin MC; Redruello B; Del Rio B; Ladero V; Palanski BA; Khosla C; Fernandez M; Alvarez MA
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6689-700. PubMed ID: 24752841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo fluorescence imaging of exogenous enzyme activity in the gastrointestinal tract.
    Fuhrmann G; Leroux JC
    Proc Natl Acad Sci U S A; 2011 May; 108(22):9032-7. PubMed ID: 21576491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of digestive enzymes from captive Brazilian flounder Paralichthys orbignyanus.
    Candiotto FB; Freitas-Júnior ACV; Neri RCA; Bezerra RS; Rodrigues RV; Sampaio LA; Tesser MB
    Braz J Biol; 2018 May; 78(2):281-288. PubMed ID: 28832833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: implications for coeliac disease.
    Mitea C; Havenaar R; Drijfhout JW; Edens L; Dekking L; Koning F
    Gut; 2008 Jan; 57(1):25-32. PubMed ID: 17494108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Celiac disease--new perspectives for prevention and treatment].
    Hille-Rehfeld A
    Med Monatsschr Pharm; 2005 Dec; 28(12):445-6. PubMed ID: 16389873
    [No Abstract]   [Full Text] [Related]  

  • 11. Enzymatic gluten detoxification: the proof of the pudding is in the eating!
    Stepniak D; Koning F
    Trends Biotechnol; 2006 Oct; 24(10):433-4. PubMed ID: 16934352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes might cut celiac symptoms.
    Kuehn BM
    JAMA; 2006 Jul; 296(4):382. PubMed ID: 16868287
    [No Abstract]   [Full Text] [Related]  

  • 13. Molecular and reverse genetic characterization of serine proteinase-induced hemolysis in the midgut of the ixodid tick Haemaphysalis longicornis.
    Miyoshi T; Tsuji N; Islam MK; Huang X; Motobu M; Alim MA; Fujisaki K
    J Insect Physiol; 2007 Feb; 53(2):195-203. PubMed ID: 17275020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of an extracellular cold-active serine protease from the psychrophilic bacterium Colwellia sp. NJ341.
    Wang QF; Miao JL; Hou YH; Ding Y; Wang GD; Li GY
    Biotechnol Lett; 2005 Aug; 27(16):1195-8. PubMed ID: 16158263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligopeptidase B: cloning and probing stability under nonequilibrium conditions.
    Polgár L; Felföldi F
    Proteins; 1998 Mar; 30(4):424-34. PubMed ID: 9533626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Future therapeutic options for celiac disease.
    Sollid LM; Khosla C
    Nat Clin Pract Gastroenterol Hepatol; 2005 Mar; 2(3):140-7. PubMed ID: 16265155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of combination enzyme therapy for celiac sprue.
    Siegel M; Bethune MT; Gass J; Ehren J; Xia J; Johannsen A; Stuge TB; Gray GM; Lee PP; Khosla C
    Chem Biol; 2006 Jun; 13(6):649-58. PubMed ID: 16793522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Oral administration of prolyl-endopeptidase: a rational treatment for celiac disease?].
    Cerf-Bensussan N
    Med Sci (Paris); 2003 Mar; 19(3):285-7. PubMed ID: 12836411
    [No Abstract]   [Full Text] [Related]  

  • 19. Hydrophobic interactions between the secondary structures on the molecular surface reinforce the alkaline stability of serine protease.
    Oguchi Y; Maeda H; Abe K; Nakajima T; Uchida T; Yamagata Y
    Biotechnol Lett; 2006 Sep; 28(17):1383-91. PubMed ID: 16823601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Stability of isoenzyme C of the collagenolytic protease from the crab Paralithodes camtschatica].
    Sakharov IIu; Litvin FE
    Biokhimiia; 1994 Feb; 59(2):246-50. PubMed ID: 8155785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.