These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 21529618)

  • 1. Lysozyme uptake and release by oxidized starch polymer microgels.
    Li Y; Kleijn M; Slaghek T; Timmermans J; Stuart MC; Norde W
    J Control Release; 2010 Nov; 148(1):e45-6. PubMed ID: 21529618
    [No Abstract]   [Full Text] [Related]  

  • 2. Lysozyme uptake by oxidized starch polymer microgels.
    Li Y; de Vries R; Kleijn M; Slaghek T; Timmermans J; Stuart MC; Norde W
    Biomacromolecules; 2010 Jul; 11(7):1754-62. PubMed ID: 20518456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients.
    Li Y; de Vries R; Slaghek T; Timmermans J; Cohen Stuart MA; Norde W
    Biomacromolecules; 2009 Jul; 10(7):1931-8. PubMed ID: 19453163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled uptake and release of lysozyme from glycerol diglycidyl ether cross-linked oxidized starch microgel.
    Zhao L; Chen Y; Li W; Lu M; Wang S; Chen X; Shi M; Wu J; Yuan Q; Li Y
    Carbohydr Polym; 2015 May; 121():276-83. PubMed ID: 25659699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of different substituted carboxymethyl starch microgels and their interactions with lysozyme.
    Zhang B; Tao H; Wei B; Jin Z; Xu X; Tian Y
    PLoS One; 2014; 9(12):e114634. PubMed ID: 25490774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysozyme distribution, structural identification, and in vitro release of starch-based microgel-lysozyme complexes.
    Zhang B; Tao H; Niu X; Li S; Chen HQ
    Food Chem; 2017 Jul; 227():137-141. PubMed ID: 28274413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of carboxymethyl starch microgel with different crosslinking densities.
    Zhang B; Wei B; Hu X; Jin Z; Xu X; Tian Y
    Carbohydr Polym; 2015 Jun; 124():245-53. PubMed ID: 25839818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of controlled uptake and release of anthocyanins by oxidized starch microgels.
    Wang Z; Li Y; Chen L; Xin X; Yuan Q
    J Agric Food Chem; 2013 Jun; 61(24):5880-7. PubMed ID: 23711203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between lysozyme and colloidal poly(NIPAM-co-acrylic acid) microgels.
    Johansson C; Gernandt J; Bradley M; Vincent B; Hansson P
    J Colloid Interface Sci; 2010 Jul; 347(2):241-51. PubMed ID: 20417522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Starch-based polymeric carriers for oral-insulin delivery.
    Mahkam M
    J Biomed Mater Res A; 2010 Mar; 92(4):1392-7. PubMed ID: 19353572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery of bioactive macromolecules from microporous polymer matrices: Release and activity profiles of lysozyme, collagenase and catalase.
    Wang Y; Chang HI; Li X; Alpar O; Coombes AG
    Eur J Pharm Sci; 2009 Jun; 37(3-4):387-94. PubMed ID: 19491030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique.
    Paillard-Giteau A; Tran VT; Thomas O; Garric X; Coudane J; Marchal S; Chourpa I; Benoît JP; Montero-Menei CN; Venier-Julienne MC
    Eur J Pharm Biopharm; 2010 Jun; 75(2):128-36. PubMed ID: 20226857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels.
    Nolan CM; Gelbaum LT; Lyon LA
    Biomacromolecules; 2006 Oct; 7(10):2918-22. PubMed ID: 17025370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microgels: From responsive polymer colloids to biomaterials.
    Saunders BR; Laajam N; Daly E; Teow S; Hu X; Stepto R
    Adv Colloid Interface Sci; 2009; 147-148():251-62. PubMed ID: 18809173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucosamine-carrying temperature- and pH-sensitive microgels: preparation, characterization, and in vitro drug release studies.
    Teng D; Hou J; Zhang X; Wang X; Wang Z; Li C
    J Colloid Interface Sci; 2008 Jun; 322(1):333-41. PubMed ID: 18417145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of lysozyme with negatively charged flexible chain polymers.
    Romanini D; Braia M; Angarten RG; Loh W; Picó G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Sep; 857(1):25-31. PubMed ID: 17644499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charged nanoparticles as protein delivery systems: a feasibility study using lysozyme as model protein.
    Cai C; Bakowsky U; Rytting E; Schaper AK; Kissel T
    Eur J Pharm Biopharm; 2008 May; 69(1):31-42. PubMed ID: 18023160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides.
    Zhang K; Wu XY
    Biomaterials; 2004 Oct; 25(22):5281-91. PubMed ID: 15110479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane.
    Suedee R; Bodhibukkana C; Tangthong N; Amnuaikit C; Kaewnopparat S; Srichana T
    J Control Release; 2008 Aug; 129(3):170-8. PubMed ID: 18550193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A charge-switched nano-sized polymeric carrier for protein delivery.
    Lee BR; Oh KT; Baik HJ; Youn YS; Lee ES
    Int J Pharm; 2010 Jun; 392(1-2):78-82. PubMed ID: 20298771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.