These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21529644)

  • 21. Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels.
    Kang GD; Cheon SH; Song SC
    Int J Pharm; 2006 Aug; 319(1-2):29-36. PubMed ID: 16677786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability.
    Siemoneit U; Schmitt C; Alvarez-Lorenzo C; Luzardo A; Otero-Espinar F; Concheiro A; Blanco-Méndez J
    Int J Pharm; 2006 Apr; 312(1-2):66-74. PubMed ID: 16464549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rheological studies of thermosensitive triblock copolymer hydrogels.
    Vermonden T; M NA; van MJ; Hennink WE
    Langmuir; 2006 Nov; 22(24):10180-4. PubMed ID: 17107019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermo-responsive PNiPAAm-g-PEG films for controlled cell detachment.
    Schmaljohann D; Oswald J; Jørgensen B; Nitschke M; Beyerlein D; Werner C
    Biomacromolecules; 2003; 4(6):1733-9. PubMed ID: 14606903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions.
    Liu SQ; Tong YW; Yang YY
    Biomaterials; 2005 Aug; 26(24):5064-74. PubMed ID: 15769542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macroporous Poly(N-isopropylacrylamide) hydrogels with adjustable size "cut-off" for the efficient and reversible immobilization of biomacromolecules.
    Fänger C; Wack H; Ulbricht M
    Macromol Biosci; 2006 Jun; 6(6):393-402. PubMed ID: 16761272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions of diuretics with a neutral temperature-responsive polymer: study by capillary electroporesis and dynamic light scattering.
    Wiedme SK; Riekkola ML; Tenhu H
    J Capill Electrophor Microchip Technol; 1999; 6(5-6):163-8. PubMed ID: 11681522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of Y-shaped poly(solketal acrylate)-containing block copolymers and study on the thermoresponsive behavior for micellar aggregates.
    Yang J; Zhang D; Jiang S; Yang J; Nie J
    J Colloid Interface Sci; 2010 Dec; 352(2):405-14. PubMed ID: 20887998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH-responsive amphiphilic hydrogel networks with IPN structure: a strategy for controlled drug release.
    Liu YY; Fan XD; Wei BR; Si QF; Chen WX; Sun L
    Int J Pharm; 2006 Feb; 308(1-2):205-9. PubMed ID: 16321489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol).
    Loh XJ; Goh SH; Li J
    Biomaterials; 2007 Oct; 28(28):4113-23. PubMed ID: 17573109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-adhesive star polymers prepared by ATRP.
    Bencherif SA; Gao H; Srinivasan A; Siegwart DJ; Hollinger JO; Washburn NR; Matyjaszewski K
    Biomacromolecules; 2009 Jul; 10(7):1795-803. PubMed ID: 19518096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels.
    Liu YY; Shao YH; Lü J
    Biomaterials; 2006 Jul; 27(21):4016-24. PubMed ID: 16563494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane). III. In vivo biocompatibility and biostability.
    Hyung Park J; Bae YH
    J Biomed Mater Res A; 2003 Feb; 64(2):309-19. PubMed ID: 12522818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superporous IPN hydrogels having enhanced mechanical properties.
    Qiu Y; Park K
    AAPS PharmSciTech; 2003 Oct; 4(4):E51. PubMed ID: 15198546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical and transport properties of the poly(ethylene oxide)-poly(acrylic acid) double network hydrogel from molecular dynamic simulations.
    Jang SS; Goddard WA; Kalani MY
    J Phys Chem B; 2007 Feb; 111(7):1729-37. PubMed ID: 17249716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug-sensing hydrogels for the inducible release of biopharmaceuticals.
    Ehrbar M; Schoenmakers R; Christen EH; Fussenegger M; Weber W
    Nat Mater; 2008 Oct; 7(10):800-4. PubMed ID: 18690239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature controlled release from polystyrene-block-poly(N-isopropylacrylamide-block-polystyrene block copolymer hydrogel.
    Ruokolainen J; Nykänen A; Priimägi A; Rahikkala A; Hirvonen SP; Raula J; Tenhu H; Kauppinen E; Mezzenga R
    J Control Release; 2010 Nov; 148(1):e53-4. PubMed ID: 21529624
    [No Abstract]   [Full Text] [Related]  

  • 38. Computing thermomechanical properties of dry homopolymers used as raw materials for formulation of biomedical hydrogels.
    Demianenko P; Minisini B; Ortelli G; Lamrani M; Poncin-Epaillard F
    J Mol Model; 2016 Jul; 22(7):159. PubMed ID: 27312711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational modeling of environmentally responsive hydrogels (ERH) for drug delivery system.
    Namboori PK; Ranjini UP; Manakadan AA; Jose A; Silvipriya KS; Belzik N; Deepak OM
    Curr Comput Aided Drug Des; 2013 Mar; 9(1):76-82. PubMed ID: 23106779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogels based on the chemically crosslinked polyacrylic acid: biopharmaceutical characterization.
    Dimitrov M; Lambov N; Shenkov S; Dosseva V; Baranovski VY
    Acta Pharm; 2003 Mar; 53(1):25-31. PubMed ID: 14769249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.