BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21529814)

  • 1. Modeling of flow in a polymeric chromatographic monolith.
    Koku H; Maier RS; Czymmek KJ; Schure MR; Lenhoff AM
    J Chromatogr A; 2011 Jun; 1218(22):3466-75. PubMed ID: 21529814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance computing of flow and transport in physically reconstructed silica monoliths.
    Hlushkou D; Bruns S; Tallarek U
    J Chromatogr A; 2010 Jun; 1217(23):3674-82. PubMed ID: 20434161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From random sphere packings to regular pillar arrays: analysis of transverse dispersion.
    Daneyko A; Hlushkou D; Khirevich S; Tallarek U
    J Chromatogr A; 2012 Sep; 1257():98-115. PubMed ID: 22921359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of dispersion in a polymeric chromatographic monolith.
    Koku H; Maier RS; Schure MR; Lenhoff AM
    J Chromatogr A; 2012 May; 1237():55-63. PubMed ID: 22465685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic and dispersion behavior in a non-porous silica monolith through fluid dynamic study of a computational mimic reconstructed from sub-micro-tomographic scans.
    Loh KC; Vasudevan V
    J Chromatogr A; 2013 Jan; 1274():65-76. PubMed ID: 23290336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From random sphere packings to regular pillar arrays: effect of the macroscopic confinement on hydrodynamic dispersion.
    Daneyko A; Khirevich S; Höltzel A; Seidel-Morgenstern A; Tallarek U
    J Chromatogr A; 2011 Nov; 1218(45):8231-48. PubMed ID: 21982445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of level-set method for deposition in three-dimensional reconstructed porous media.
    Vu MT; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053301. PubMed ID: 25353909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emulsion-cryogelation technique for fabricating a versatile toolbox of hierarchical polymeric monolith and its application in chromatography.
    Li Y; Qi L; Li N; Ma H
    Talanta; 2016 May; 152():244-50. PubMed ID: 26992517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of monoliths through their mechanical properties.
    Podgornik A; Savnik A; Jančar J; Krajnc NL
    J Chromatogr A; 2014 Mar; 1333():9-17. PubMed ID: 24529408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore-scale analysis of Newtonian flow in the explicit geometry of vertebral trabecular bones using lattice Boltzmann simulation.
    Zeiser T; Bashoor-Zadeh M; Darabi A; Baroud G
    Proc Inst Mech Eng H; 2008 Feb; 222(2):185-94. PubMed ID: 18441754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of chromatographic performance with morphological features of organic polymer monoliths.
    Aggarwal P; Asthana V; Lawson JS; Tolley HD; Wheeler DR; Mazzeo BA; Lee ML
    J Chromatogr A; 2014 Mar; 1334():20-9. PubMed ID: 24569008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 3D pore structure and fluid dynamics simulation of macroporous monoliths: High permeability due to alternating channel width.
    Jungreuthmayer C; Steppert P; Sekot G; Zankel A; Reingruber H; Zanghellini J; Jungbauer A
    J Chromatogr A; 2015 Dec; 1425():141-9. PubMed ID: 26615711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1.1 μm superficially porous particles for liquid chromatography. Part I: synthesis and particle structure characterization.
    Blue LE; Jorgenson JW
    J Chromatogr A; 2011 Nov; 1218(44):7989-95. PubMed ID: 21939979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatographic comparison of bupivacaine imprinted polymers prepared in crushed monolith, microsphere, silica-based composite and capillary monolith formats.
    Oxelbark J; Legido-Quigley C; Aureliano CS; Titirici MM; Schillinger E; Sellergren B; Courtois J; Irgum K; Dambies L; Cormack PA; Sherrington DC; De Lorenzi E
    J Chromatogr A; 2007 Aug; 1160(1-2):215-26. PubMed ID: 17559860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and simulation of the dynamic behavior of monoliths. Effects of pore structure from pore network model analysis and comparison with columns packed with porous spherical particles.
    Liapis AI; Meyers JJ; Crosser OK
    J Chromatogr A; 1999 Dec; 865(1-2):13-25. PubMed ID: 10674927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatographic performance of monolithic and particulate stationary phases. Hydrodynamics and adsorption capacity.
    Leinweber FC; Tallarek U
    J Chromatogr A; 2003 Jul; 1006(1-2):207-28. PubMed ID: 12938887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of polyethyleneimine modified ion-exchanger based on poly(methacrylate-co-ethylene dimethacrylate) monolith.
    Wang M; Xu J; Zhou X; Tan T
    J Chromatogr A; 2007 Apr; 1147(1):24-9. PubMed ID: 17350638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural variation of solid core and thickness of porous shell of 1.7 μm core-shell silica particles on chromatographic performance: narrow bore columns.
    Omamogho JO; Hanrahan JP; Tobin J; Glennon JD
    J Chromatogr A; 2011 Apr; 1218(15):1942-53. PubMed ID: 21163484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophilic polymeric monoliths containing choline phosphate for separation science applications.
    Wang Q; Wu H; Peng K; Jin H; Shao H; Wang Y; Crommen J; Jiang Z
    Anal Chim Acta; 2018 Jan; 999():184-189. PubMed ID: 29254571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatography modelling to describe protein adsorption at bead level.
    Gerontas S; Shapiro MS; Bracewell DG
    J Chromatogr A; 2013 Apr; 1284():44-52. PubMed ID: 23433886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.