BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21529892)

  • 1. A dynamic model to calculate cadmium concentrations in bovine tissues from basic soil characteristics.
    Waegeneers N; Ruttens A; De Temmerman L
    Sci Total Environ; 2011 Jun; 409(14):2815-23. PubMed ID: 21529892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of cadmium accumulation in the liver and kidney of sheep derived from soil and dietary characteristics.
    Phillips CJ; Tudoreanu L
    J Sci Food Agric; 2011 Jan; 91(2):370-6. PubMed ID: 20981736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on the transfer of cadmium from soil to pasture under semi-arid conditions in Sargodha, Pakistan.
    Khan ZI; Ashraf M; Ahmad K; Akram NA
    Biol Trace Elem Res; 2011 Aug; 142(2):143-7. PubMed ID: 20632127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields.
    Römkens PF; Brus DJ; Guo HY; Chu CL; Chiang CM; Koopmans GF
    Sci Total Environ; 2011 Aug; 409(17):3098-105. PubMed ID: 21632090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines.
    Römkens PF; Guo HY; Chu CL; Liu TS; Chiang CF; Koopmans GF
    Environ Pollut; 2009; 157(8-9):2435-44. PubMed ID: 19345457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The input-output balance of cadmium in a paddy field of Tokyo.
    Kikuchi T; Okazaki M; Toyota K; Motobayashi T; Kato M
    Chemosphere; 2007 Mar; 67(5):920-7. PubMed ID: 17207840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss.
    Wang MY; Chen AK; Wong MH; Qiu RL; Cheng H; Ye ZH
    Environ Pollut; 2011 Jun; 159(6):1730-6. PubMed ID: 21411196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological risk assessment on a cadmium contaminated soil landfill--a preliminary evaluation based on toxicity tests on local species and site-specific information.
    Chen CM; Liu MC
    Sci Total Environ; 2006 Apr; 359(1-3):120-9. PubMed ID: 15964610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies.
    Juhasz AL; Weber J; Naidu R; Gancarz D; Rofe A; Todor D; Smith E
    Environ Sci Technol; 2010 Jul; 44(13):5240-7. PubMed ID: 20527788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium exposure pathways in the Czech urban population.
    Puklová V; Batáriová A; Cerná M; Kotlik B; Kratzer K; Melichercik J; Ruprich J; Rehůrková I; Speváková V
    Cent Eur J Public Health; 2005 Mar; 13(1):11-9. PubMed ID: 15859174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium bioaccumulation in Proisotoma minuta in relation to bioavailability in soils.
    Nursita AI; Singh B; Lees E
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1767-73. PubMed ID: 19493569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium in organic and conventional pig production.
    Lindén A; Andersson K; Oskarsson A
    Arch Environ Contam Toxicol; 2001 Apr; 40(3):425-31. PubMed ID: 11443376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment.
    Lehmann C; Rebele F
    Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic multipathway modeling of Cd bioaccumulation in Daphnia magna using waterborne and dietborne exposures.
    Goulet RR; Krack S; Doyle PJ; Hare L; Vigneault B; McGeer JC
    Aquat Toxicol; 2007 Feb; 81(2):117-25. PubMed ID: 17173986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators. II. Calculations for dichlorodiphenyltrichloroethane (DDT) and cadmium.
    Jongbloed RH; Traas TP; Luttik R
    Ecotoxicol Environ Saf; 1996 Aug; 34(3):279-306. PubMed ID: 8812196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain.
    Azizur Rahman M; Hasegawa H; Mahfuzur Rahman M; Mazid Miah MA; Tasmin A
    Ecotoxicol Environ Saf; 2008 Feb; 69(2):317-24. PubMed ID: 17346792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of cadmium in the chain from soil via crops and feed to pig blood and kidney.
    Lindén A; Olsson IM; Bensryd I; Lundh T; Skerfving S; Oskarsson A
    Ecotoxicol Environ Saf; 2003 Jun; 55(2):213-22. PubMed ID: 12742371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.).
    Wang J; Yuan J; Yang Z; Huang B; Zhou Y; Xin J; Gong Y; Yu H
    J Agric Food Chem; 2009 Oct; 57(19):8942-9. PubMed ID: 19739670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the "threshold of toxicological concern" to derive tolerable concentrations of "non-relevant metabolites" formed from plant protection products in ground and drinking water.
    Melching-Kollmuss S; Dekant W; Kalberlah F
    Regul Toxicol Pharmacol; 2010 Mar; 56(2):126-34. PubMed ID: 19766683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining cadmium critical concentrations in natural soils by assessing Collembola mortality, reproduction and growth.
    Bur T; Probst A; Bianco A; Gandois L; Crouau Y
    Ecotoxicol Environ Saf; 2010 Mar; 73(3):415-22. PubMed ID: 19913911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.