These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2153025)

  • 21. Free oxygen radicals contribute to platelet aggregation and cyclic flow variations in stenosed and endothelium-injured canine coronary arteries.
    Ikeda H; Koga Y; Oda T; Kuwano K; Nakayama H; Ueno T; Toshima H; Michael LH; Entman ML
    J Am Coll Cardiol; 1994 Dec; 24(7):1749-56. PubMed ID: 7963124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between mechanical dysfunction and depression of sarcolemmal Ca(2+)-pump activity in hearts perfused with oxygen free radicals.
    Matsubara T; Dhalla NS
    Mol Cell Biochem; 1996; 160-161():179-85. PubMed ID: 8901472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals.
    Kaneko M; Beamish RE; Dhalla NS
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H368-74. PubMed ID: 2537032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of cardiac sarcolemma Na(+)-K+ ATPase by oxyradical generating systems.
    Shao Q; Matsubara T; Bhatt SK; Dhalla NS
    Mol Cell Biochem; 1995 Jun 7-21; 147(1-2):139-44. PubMed ID: 7494543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proton and free oxygen radical interaction with the calcium transport system of cardiac sarcoplasmic reticulum.
    Hess ML; Okabe E; Kontos HA
    J Mol Cell Cardiol; 1981 Aug; 13(8):767-72. PubMed ID: 6267305
    [No Abstract]   [Full Text] [Related]  

  • 26. Modification of contractile proteins by oxygen free radicals in rat heart.
    Kaneko M; Masuda H; Suzuki H; Matsumoto Y; Kobayashi A; Yamazaki N
    Mol Cell Biochem; 1993 Aug; 125(2):163-9. PubMed ID: 8283971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle.
    Rubanyi GM; Vanhoutte PM
    Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biphasic changes in the sarcolemmal phosphatidylethanolamine N-methylation activity in catecholamine-induced cardiomyopathy.
    Okumura K; Panagia V; Beamish RE; Dhalla NS
    J Mol Cell Cardiol; 1987 Apr; 19(4):357-66. PubMed ID: 3612819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of gastric glucosamine synthetase activity by oxygen radicals: a possible cause of decreased mucosal protective capacity.
    Tatsumi Y; Kodama T; Kashima K; Ohkuma S; Kuriyama K
    Jpn J Pharmacol; 1992 Apr; 58(4):391-8. PubMed ID: 1405036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alterations in human vascular endothelial cell function by oxygen free radicals. Platelet adherence and prostacyclin release.
    Shatos MA; Doherty JM; Hoak JC
    Arterioscler Thromb; 1991; 11(3):594-601. PubMed ID: 1851431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased SR phospholipid N-methylation in skeletal muscle of diabetic rats.
    Taira Y; Ganguly PK; Panagia V; Dhalla NS
    Am J Physiol; 1988 Sep; 255(3 Pt 1):E347-52. PubMed ID: 3138915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulation of Ca2+-pump in rat heart sarcolemma by phosphatidylethanolamine N-methylation.
    Panagia V; Okumura K; Makino N; Dhalla NS
    Biochim Biophys Acta; 1986 Apr; 856(2):383-7. PubMed ID: 2937455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of oxygen radicals on cerebral arterioles.
    Wei EP; Christman CW; Kontos HA; Povlishock JT
    Am J Physiol; 1985 Feb; 248(2 Pt 2):H157-62. PubMed ID: 3918462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free radical mediation of the effects of acidosis on calcium transport by cardiac sarcoplasmic reticulum in whole heart homogenates.
    Hess ML; Okabe E; Ash P; Kontos HA
    Cardiovasc Res; 1984 Mar; 18(3):149-57. PubMed ID: 6322991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxygen metabolite-induced cytotoxicity to cultured rat gastric mucosal cells.
    Hiraishi H; Terano A; Ota S; Ivey KJ; Sugimoto T
    Am J Physiol; 1987 Jul; 253(1 Pt 1):G40-8. PubMed ID: 3111274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelium-dependent contractions to oxygen-derived free radicals in the canine basilar artery.
    Katusić ZS; Schugel J; Cosentino F; Vanhoutte PM
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H859-64. PubMed ID: 8456988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes.
    Goldhaber JI
    Am J Physiol; 1996 Sep; 271(3 Pt 2):H823-33. PubMed ID: 8853314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes.
    Volterra A; Trotti D; Tromba C; Floridi S; Racagni G
    J Neurosci; 1994 May; 14(5 Pt 1):2924-32. PubMed ID: 7910203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel.
    Kawakami M; Okabe E
    Mol Pharmacol; 1998 Mar; 53(3):497-503. PubMed ID: 9495817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for three catalytic sites in heart sarcolemmal phospholipid N-methylation.
    Ganguly PK; Panagia V; Dhalla NS
    Adv Myocardiol; 1985; 6():157-64. PubMed ID: 3992035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.