These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 21530367)

  • 21. Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils.
    Draye X; Kim Y; Lobet G; Javaux M
    J Exp Bot; 2010 May; 61(8):2145-55. PubMed ID: 20453027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.
    Postma JA; Schurr U; Fiorani F
    Biotechnol Adv; 2014; 32(1):53-65. PubMed ID: 24012600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RootScape: a landmark-based system for rapid screening of root architecture in Arabidopsis.
    Ristova D; Rosas U; Krouk G; Ruffel S; Birnbaum KD; Coruzzi GM
    Plant Physiol; 2013 Mar; 161(3):1086-96. PubMed ID: 23335624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture.
    Armengaud P; Zambaux K; Hills A; Sulpice R; Pattison RJ; Blatt MR; Amtmann A
    Plant J; 2009 Mar; 57(5):945-56. PubMed ID: 19000163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.
    Zhao J; Bodner G; Rewald B; Leitner D; Nagel KA; Nakhforoosh A
    J Exp Bot; 2017 Feb; 68(5):965-982. PubMed ID: 28168270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput phenotyping of root growth dynamics.
    Yazdanbakhsh N; Fisahn J
    Methods Mol Biol; 2012; 918():21-40. PubMed ID: 22893283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic and genomic dissection of maize root development and architecture.
    Hochholdinger F; Tuberosa R
    Curr Opin Plant Biol; 2009 Apr; 12(2):172-7. PubMed ID: 19157956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Field high-throughput phenotyping: the new crop breeding frontier.
    Araus JL; Cairns JE
    Trends Plant Sci; 2014 Jan; 19(1):52-61. PubMed ID: 24139902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploiting natural variation in root system architecture via genome-wide association studies.
    Deja-Muylle A; Parizot B; Motte H; Beeckman T
    J Exp Bot; 2020 Apr; 71(8):2379-2389. PubMed ID: 31957786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture.
    Rogers ED; Monaenkova D; Mijar M; Nori A; Goldman DI; Benfey PN
    Plant Physiol; 2016 Jul; 171(3):2028-40. PubMed ID: 27208237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological and genetic characterisation of the root system architecture of selected barley recombinant chromosome substitution lines using an integrated phenotyping approach.
    Canto CF; Kalogiros DI; Ptashnyk M; George TS; Waugh R; Bengough AG; Russell J; Dupuy LX
    J Theor Biol; 2018 Jun; 447():84-97. PubMed ID: 29559229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography.
    Tracy SR; Roberts JA; Black CR; McNeill A; Davidson R; Mooney SJ
    J Exp Bot; 2010; 61(2):311-3. PubMed ID: 20051353
    [No Abstract]   [Full Text] [Related]  

  • 34. Genetic architecture of complex traits in plants.
    Holland JB
    Curr Opin Plant Biol; 2007 Apr; 10(2):156-61. PubMed ID: 17291822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated High-Throughput Root Phenotyping of Arabidopsis thaliana Under Nutrient Deficiency Conditions.
    Satbhai SB; Göschl C; Busch W
    Methods Mol Biol; 2017; 1610():135-153. PubMed ID: 28439862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computer vision and machine learning enabled soybean root phenotyping pipeline.
    Falk KG; Jubery TZ; Mirnezami SV; Parmley KA; Sarkar S; Singh A; Ganapathysubramanian B; Singh AK
    Plant Methods; 2020; 16():5. PubMed ID: 31993072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography.
    Teramoto S; Takayasu S; Kitomi Y; Arai-Sanoh Y; Tanabata T; Uga Y
    Plant Methods; 2020; 16():66. PubMed ID: 32426023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iterative image segmentation of plant roots for high-throughput phenotyping.
    Seidenthal K; Panjvani K; Chandnani R; Kochian L; Eramian M
    Sci Rep; 2022 Oct; 12(1):16563. PubMed ID: 36195610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes.
    Landi P; Giuliani S; Salvi S; Ferri M; Tuberosa R; Sanguineti MC
    J Exp Bot; 2010 Aug; 61(13):3553-62. PubMed ID: 20627896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Root System Phenotying of Soil-Grown Plants via RGB and Hyperspectral Imaging.
    Bodner G; Alsalem M; Nakhforoosh A
    Methods Mol Biol; 2021; 2264():245-268. PubMed ID: 33263915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.