BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21530506)

  • 1. Retinal proteomic changes following unilateral optic nerve transection and early experimental glaucoma in non-human primate eyes.
    Stowell C; Arbogast B; Cioffi G; Burgoyne C; Zhou A
    Exp Eye Res; 2011 Jul; 93(1):13-28. PubMed ID: 21530506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optic nerve dynein motor protein distribution changes with intraocular pressure elevation in a rat model of glaucoma.
    Martin KR; Quigley HA; Valenta D; Kielczewski J; Pease ME
    Exp Eye Res; 2006 Aug; 83(2):255-62. PubMed ID: 16546168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma.
    Tezel G; Yang X; Cai J
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3177-87. PubMed ID: 16123417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat.
    Martin KR; Levkovitch-Verbin H; Valenta D; Baumrind L; Pease ME; Quigley HA
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2236-43. PubMed ID: 12091422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcription factor c-jun is activated in retinal ganglion cells in experimental rat glaucoma.
    Levkovitch-Verbin H; Quigley HA; Martin KR; Harizman N; Valenta DF; Pease ME; Melamed S
    Exp Eye Res; 2005 May; 80(5):663-70. PubMed ID: 15862173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms.
    Yang Z; Quigley HA; Pease ME; Yang Y; Qian J; Valenta D; Zack DJ
    Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5539-48. PubMed ID: 18055803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental glaucoma and optic nerve transection induce simultaneous upregulation of proapoptotic and prosurvival genes.
    Levkovitch-Verbin H; Dardik R; Vander S; Nisgav Y; Kalev-Landoy M; Melamed S
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2491-7. PubMed ID: 16723461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma.
    Pease ME; McKinnon SJ; Quigley HA; Kerrigan-Baumrind LA; Zack DJ
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):764-74. PubMed ID: 10711692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure.
    Pena JD; Agapova O; Gabelt BT; Levin LA; Lucarelli MJ; Kaufman PL; Hernandez MR
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2303-14. PubMed ID: 11527944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphologic changes in chronic high-pressure experimental glaucoma in rhesus monkeys.
    Hayreh SS; Pe'er J; Zimmerman MB
    J Glaucoma; 1999 Feb; 8(1):56-71. PubMed ID: 10084276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between retinal ganglion cell death and chronically developing inherited glaucoma in a new rat mutant.
    Thanos S; Naskar R
    Exp Eye Res; 2004 Jul; 79(1):119-29. PubMed ID: 15183107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative iTRAQ analysis of retinal ganglion cell degeneration after optic nerve crush.
    Magharious M; D'Onofrio PM; Hollander A; Zhu P; Chen J; Koeberle PD
    J Proteome Res; 2011 Aug; 10(8):3344-62. PubMed ID: 21627321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal gene profiling in a hereditary rodent model of elevated intraocular pressure.
    Naskar R; Thanos S
    Mol Vis; 2006 Oct; 12():1199-210. PubMed ID: 17102796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rat model of glaucoma induced by episcleral vein ligation.
    Yu S; Tanabe T; Yoshimura N
    Exp Eye Res; 2006 Oct; 83(4):758-70. PubMed ID: 16707124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats.
    Quigley HA; McKinnon SJ; Zack DJ; Pease ME; Kerrigan-Baumrind LA; Kerrigan DF; Mitchell RS
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3460-6. PubMed ID: 11006239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The expression of heat shock protein 27 in retinal ganglion cells in the rat glaucoma model].
    Lü HB; Yuan YS; Li Y; Li J
    Zhonghua Yan Ke Za Zhi; 2005 Jun; 41(6):533-9. PubMed ID: 16008915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longitudinal non-invasive proton NMR spectroscopy measurement of vitreous lactate in a rabbit model of ocular hypertension.
    Ngumah QC; Buchthal SD; Dacheux RF
    Exp Eye Res; 2006 Aug; 83(2):390-400. PubMed ID: 16631164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The expression of heat shock protein 27 in retinal ganglion and glial cells in a rat glaucoma model.
    Kalesnykas G; Niittykoski M; Rantala J; Miettinen R; Salminen A; Kaarniranta K; Uusitalo H
    Neuroscience; 2007 Dec; 150(3):692-704. PubMed ID: 17993247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model.
    Mittag TW; Danias J; Pohorenec G; Yuan HM; Burakgazi E; Chalmers-Redman R; Podos SM; Tatton WG
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3451-9. PubMed ID: 11006238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking LINGO-1 function promotes retinal ganglion cell survival following ocular hypertension and optic nerve transection.
    Fu QL; Hu B; Wu W; Pepinsky RB; Mi S; So KF
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):975-85. PubMed ID: 18326721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.