These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 21530535)
61. Temperature-dependent solid-state electron transport through bacteriorhodopsin: experimental evidence for multiple transport paths through proteins. Sepunaru L; Friedman N; Pecht I; Sheves M; Cahen D J Am Chem Soc; 2012 Mar; 134(9):4169-76. PubMed ID: 22296717 [TBL] [Abstract][Full Text] [Related]
62. Structures of photointermediates and their implications for the proton pump mechanism. Kataoka M; Kamikubo H Biochim Biophys Acta; 2000 Aug; 1460(1):166-76. PubMed ID: 10984598 [TBL] [Abstract][Full Text] [Related]
63. Reconciling crystallography and mutagenesis: a synthetic approach to the creation of a comprehensive model for proton pumping by bacteriorhodopsin. Brown LS Biochim Biophys Acta; 2000 Aug; 1460(1):49-59. PubMed ID: 10984590 [TBL] [Abstract][Full Text] [Related]
64. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. Henderson R; Baldwin JM; Ceska TA; Zemlin F; Beckmann E; Downing KH J Mol Biol; 1990 Jun; 213(4):899-929. PubMed ID: 2359127 [TBL] [Abstract][Full Text] [Related]
65. Thermal denaturing of bacteriorhodopsin by X-Ray scattering from oriented purple membranes. Müller J; Münster C; Salditt T Biophys J; 2000 Jun; 78(6):3208-17. PubMed ID: 10827997 [TBL] [Abstract][Full Text] [Related]
66. Water molecules and hydrogen-bonded networks in bacteriorhodopsin--molecular dynamics simulations of the ground state and the M-intermediate. Grudinin S; Büldt G; Gordeliy V; Baumgaertner A Biophys J; 2005 May; 88(5):3252-61. PubMed ID: 15731388 [TBL] [Abstract][Full Text] [Related]
67. Microsecond atomic force sensing of protein conformational dynamics: implications for the primary light-induced events in bacteriorhodopsin. Rousso I; Khachatryan E; Gat Y; Brodsky I; Ottolenghi M; Sheves M; Lewis A Proc Natl Acad Sci U S A; 1997 Jul; 94(15):7937-41. PubMed ID: 9223291 [TBL] [Abstract][Full Text] [Related]
68. Dynamics of Bacteriorhodopsin in the Dark-Adapted State from Solution Nuclear Magnetic Resonance Spectroscopy. Kooijman L; Schuster M; Baumann C; Jurt S; Löhr F; Fürtig B; Güntert P; Zerbe O Angew Chem Int Ed Engl; 2020 Nov; 59(47):20965-20972. PubMed ID: 32726501 [TBL] [Abstract][Full Text] [Related]
70. Progress toward an explicit mechanistic model for the light-driven pump, bacteriorhodopsin. Lanyi JK FEBS Lett; 1999 Dec; 464(3):103-7. PubMed ID: 10618486 [TBL] [Abstract][Full Text] [Related]
71. What is the real crystallographic structure of the L photointermediate of bacteriorhodopsin? Lanyi JK Biochim Biophys Acta; 2004 Jul; 1658(1-2):14-22. PubMed ID: 15282169 [TBL] [Abstract][Full Text] [Related]
72. Nanoscale electron transport and photodynamics enhancement in lipid-depleted bacteriorhodopsin monomers. Mukhopadhyay S; Cohen SR; Marchak D; Friedman N; Pecht I; Sheves M; Cahen D ACS Nano; 2014 Aug; 8(8):7714-22. PubMed ID: 25003581 [TBL] [Abstract][Full Text] [Related]
73. Bacteriorhodopsin: a paradigm for proton pumps? Lanyi JK Biophys Chem; 1995; 56(1-2):143-51. PubMed ID: 17023319 [TBL] [Abstract][Full Text] [Related]
74. Automatic recovery of missing amplitudes and phases in tilt-limited electron crystallography of two-dimensional crystals. Gipson BR; Masiel DJ; Browning ND; Spence J; Mitsuoka K; Stahlberg H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011916. PubMed ID: 21867222 [TBL] [Abstract][Full Text] [Related]
75. Revival of electron crystallography. Hite RK; Raunser S; Walz T Curr Opin Struct Biol; 2007 Aug; 17(4):389-95. PubMed ID: 17723294 [TBL] [Abstract][Full Text] [Related]
76. Upper limits of dielectric permittivity modulation in bacteriorhodopsin films. Acebal P; Blaya S; Carretero L; Fimia A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011909. PubMed ID: 16090003 [TBL] [Abstract][Full Text] [Related]
77. Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors. Braun T; Backmann N; Vögtli M; Bietsch A; Engel A; Lang HP; Gerber C; Hegner M Biophys J; 2006 Apr; 90(8):2970-7. PubMed ID: 16443650 [TBL] [Abstract][Full Text] [Related]
78. Characterization of conditions required for X-Ray diffraction experiments with protein microcrystals. Glaeser R; Facciotti M; Walian P; Rouhani S; Holton J; MacDowell A; Celestre R; Cambie D; Padmore H Biophys J; 2000 Jun; 78(6):3178-85. PubMed ID: 10827994 [TBL] [Abstract][Full Text] [Related]
79. Studies of cation binding in ZnCl2-regenerated bacteriorhodopsin by x-ray absorption fine structures: effects of removing water molecules and adding Cl- ions. Zhang K; Song L; Dong J; El-Sayed MA Biophys J; 1997 Oct; 73(4):2097-105. PubMed ID: 9336205 [TBL] [Abstract][Full Text] [Related]
80. Spectroscopic characterization of bacteriorhodopsin's L-intermediate in 3D crystals cooled to 170 K. Royant A; Edman K; Ursby T; Pebay-Peyroula E; Landau EM; Neutze R Photochem Photobiol; 2001 Dec; 74(6):794-804. PubMed ID: 11783935 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]