These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 21530596)
1. Comparison of polysialic acid production in Escherichia coli K1 during batch cultivation and fed-batch cultivation applying two different control strategies. Chen R; John J; Rode B; Hitzmann B; Gerardy-Schahn R; Kasper C; Scheper T J Biotechnol; 2011 Jul; 154(4):222-9. PubMed ID: 21530596 [TBL] [Abstract][Full Text] [Related]
2. [High-cell density cultivation of recombinant Escherichia coli for production of TRAIL by using a 2-stage feeding strategy]. Zhang Y; Shen YL; Xia XX; Sun AY; Wei DZ; Zhou JS; Zhang GJ; Wang LH; Jiao BH Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):408-13. PubMed ID: 15971615 [TBL] [Abstract][Full Text] [Related]
3. Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli. Xu B; Jahic M; Enfors SO Biotechnol Prog; 1999; 15(1):81-90. PubMed ID: 9933517 [TBL] [Abstract][Full Text] [Related]
4. Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2]. Shin CS; Hong MS; Bae CS; Lee J Biotechnol Prog; 1997; 13(3):249-57. PubMed ID: 9190075 [TBL] [Abstract][Full Text] [Related]
5. Use of fed-batch cultivation for achieving high cell densities for the pilot-scale production of a recombinant protein (phenylalanine dehydrogenase) in Escherichia coli. Faulkner E; Barrett M; Okor S; Kieran P; Casey E; Paradisi F; Engel P; Glennon B Biotechnol Prog; 2006; 22(3):889-97. PubMed ID: 16739976 [TBL] [Abstract][Full Text] [Related]
6. Cell engineering of Escherichia coli allows high cell density accumulation without fed-batch process control. Bäcklund E; Markland K; Larsson G Bioprocess Biosyst Eng; 2008 Jan; 31(1):11-20. PubMed ID: 17899203 [TBL] [Abstract][Full Text] [Related]
7. A new polysialic acid production process based on dual-stage pH control and fed-batch fermentation for higher yield and resulting high molecular weight product. Zheng ZY; Wang SZ; Li GS; Zhan XB; Lin CC; Wu JR; Zhu L Appl Microbiol Biotechnol; 2013 Mar; 97(6):2405-12. PubMed ID: 23090056 [TBL] [Abstract][Full Text] [Related]
8. Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies. Kleist S; Miksch G; Hitzmann B; Arndt M; Friehs K; Flaschel E Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):456-62. PubMed ID: 12764560 [TBL] [Abstract][Full Text] [Related]
9. Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor. Zelić B; Vasić-Racki D; Wandrey C; Takors R Bioprocess Biosyst Eng; 2004 Jul; 26(4):249-58. PubMed ID: 15085423 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Fu W; Lin J; Cen P Bioresour Technol; 2008 Jul; 99(11):4864-70. PubMed ID: 17993272 [TBL] [Abstract][Full Text] [Related]
11. Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate, and salts. Jensen EB; Carlsen S Biotechnol Bioeng; 1990 Jun; 36(1):1-11. PubMed ID: 18592603 [TBL] [Abstract][Full Text] [Related]
12. Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures. Yildirim S; Konrad D; Calvez S; Drider D; Prévost H; Lacroix C Appl Microbiol Biotechnol; 2007 Dec; 77(3):525-31. PubMed ID: 17882416 [TBL] [Abstract][Full Text] [Related]
13. Effect of amino acid supplement on cell yield and gene product in Escherichia coli harboring plasmid. Mizutani S; Mori H; Shimizu S; Sakaguchi K; Kobayashi T Biotechnol Bioeng; 1986 Feb; 28(2):204-9. PubMed ID: 18555316 [TBL] [Abstract][Full Text] [Related]
14. Effects of growth rate on the production of Pseudomonas fluorescens lipase during the fed-batch cultivation of Escherichia coli. Kim SS; Kim EK; Rhee JS Biotechnol Prog; 1996; 12(5):718-22. PubMed ID: 8879159 [TBL] [Abstract][Full Text] [Related]
15. Fed-batch culture of Escherichia coli for L-valine production based on in silico flux response analysis. Park JH; Kim TY; Lee KH; Lee SY Biotechnol Bioeng; 2011 Apr; 108(4):934-46. PubMed ID: 21404266 [TBL] [Abstract][Full Text] [Related]
16. Large-scale production and homogenous purification of long chain polysialic acids from E. coli K1. Rode B; Endres C; Ran C; Stahl F; Beutel S; Kasper C; Galuska S; Geyer R; Mühlenhoff M; Gerardy-Schahn R; Scheper T J Biotechnol; 2008 Jun; 135(2):202-9. PubMed ID: 18482777 [TBL] [Abstract][Full Text] [Related]
17. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. Calado CR; Almeida C; Cabral JM; Fonseca LP J Biosci Bioeng; 2003; 96(2):141-8. PubMed ID: 16233499 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of fed-batch cultures of recombinant Escherichia coli containing human-like collagen cDNA at different specific growth rates. Fan DD; Luo Y; Mi Y; Ma XX; Shang L Biotechnol Lett; 2005 Jun; 27(12):865-70. PubMed ID: 16086249 [TBL] [Abstract][Full Text] [Related]
19. Intracellular pH-based controlled cultivation of yeast cells: II. cultivation methodology. Sureshkumar GK; Mutharasan R Biotechnol Bioeng; 1993 Jul; 42(3):295-302. PubMed ID: 18613012 [TBL] [Abstract][Full Text] [Related]
20. Model based optimization of the fed-batch production of a highly active transglutaminase variant in Escherichia coli. Sommer C; Volk N; Pietzsch M Protein Expr Purif; 2011 May; 77(1):9-19. PubMed ID: 21168505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]