These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21531553)

  • 1. Styrene removal from polluted air in one and two-liquid phase biotrickling filter: steady and transient-state performance and pressure drop control.
    Rene ER; Montes M; Veiga MC; Kennes C
    Bioresour Technol; 2011 Jul; 102(13):6791-800. PubMed ID: 21531553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of a fungal monolith bioreactor for the removal of styrene from polluted air.
    Rene ER; López ME; Veiga MC; Kennes C
    Bioresour Technol; 2010 Apr; 101(8):2608-15. PubMed ID: 19944600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of gas-phase styrene using the fungus Sporothrix variecibatus: impact of pollutant load and transient operation.
    Rene ER; Veiga MC; Kennes C
    Chemosphere; 2010 Mar; 79(2):221-7. PubMed ID: 20149411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-liquid-phase mesophilic and thermophilic biotrickling filters for the biodegradation of alpha-pinene.
    Montes M; Veiga MC; Kennes C
    Bioresour Technol; 2010 Dec; 101(24):9493-9. PubMed ID: 20716484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of oil concentration and residence time on the biodegradation of α-pinene vapours in two-liquid phase suspended-growth bioreactors.
    Montes M; Veiga MC; Kennes C
    J Biotechnol; 2012 Feb; 157(4):554-63. PubMed ID: 21807039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotrickling filter modeling for styrene abatement. Part 2: Simulating a two-phase partitioning bioreactor.
    San-Valero P; Dorado AD; Quijano G; Álvarez-Hornos FJ; Gabaldón C
    Chemosphere; 2018 Jan; 191():1075-1082. PubMed ID: 29096881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus.
    Rene ER; Špačková R; Veiga MC; Kennes C
    J Hazard Mater; 2010 Dec; 184(1-3):204-214. PubMed ID: 20869172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of nitrogen source and empty bed residence time on the removal of styrene gaseous emissions by biotrickling filtration.
    Sempere F; Martínez-Soria V; Palau J; Penya-Roja JM; San-Valero P; Gabaldón C
    Bioprocess Biosyst Eng; 2011 Sep; 34(7):859-67. PubMed ID: 21442419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady- and transient-state performance of a thermophilic suspended-growth bioreactor for α-pinene removal from polluted air.
    Montes M; Rene ER; Veiga MC; Kennes C
    Chemosphere; 2013 Nov; 93(11):2914-21. PubMed ID: 24183623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of dichloromethane from waste gases in one- and two-liquid-phase stirred tank bioreactors and biotrickling filters.
    Bailón L; Nikolausz M; Kästner M; Veiga MC; Kennes C
    Water Res; 2009 Jan; 43(1):11-20. PubMed ID: 18945466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of gaseous alpha-pinene by a combined system containing photo oxidation and aerobic biotrickling filtration.
    Cheng ZW; Zhang LL; Chen JM; Yu JM; Gao ZL; Jiang YF
    J Hazard Mater; 2011 Sep; 192(3):1650-8. PubMed ID: 21803492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative assessment of the performance of one- and two-liquid phase biotrickling filters for the simultaneous abatement of gaseous mixture of methanol, α-pinene, and hydrogen sulfide.
    Zamir SM; Rene ER; Veiga MC; Kennes C
    Chemosphere; 2023 Nov; 341():140022. PubMed ID: 37657695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of a biofilter for the removal of high concentrations of styrene under steady and non-steady state conditions.
    Rene ER; Veiga MC; Kennes C
    J Hazard Mater; 2009 Aug; 168(1):282-90. PubMed ID: 19278782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of a biotrickling filter treating a mixture of oxygenated VOCs during intermittent loading.
    Sempere F; Gabaldón C; Martínez-Soria V; Marzal P; Penya-roja JM; Javier Álvarez-Hornos F
    Chemosphere; 2008 Nov; 73(9):1533-9. PubMed ID: 18848344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural network models for biological waste-gas treatment systems.
    Rene ER; Estefanía López M; Veiga MC; Kennes C
    N Biotechnol; 2011 Dec; 29(1):56-73. PubMed ID: 21784184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. o-Xylene removal using one- and two-phase partitioning biotrickling filters: steady/transient-state performance and microbial community.
    Wu C; Xu P; Xu B; Li W; Li S; Wang X
    Environ Technol; 2018 Jan; 39(1):109-119. PubMed ID: 28278766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotreatment of a gas-phase volatile mixture from fibreglass and composite manufacturing industries.
    Rene ER; Montes M; Veiga MC; Kennes C
    N Biotechnol; 2011 Dec; 29(1):46-55. PubMed ID: 21911090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotrickling filter modeling for styrene abatement. Part 1: Model development, calibration and validation on an industrial scale.
    San-Valero P; Dorado AD; Martínez-Soria V; Gabaldón C
    Chemosphere; 2018 Jan; 191():1066-1074. PubMed ID: 29102028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of methanol vapours in a biotrickling filter: performance analysis and experimental determination of partition coefficient.
    Avalos Ramirez A; Peter Jones J; Heitz M
    Bioresour Technol; 2009 Feb; 100(4):1573-81. PubMed ID: 18977135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The treatment of waste air containing phenol vapors in biotrickling filter.
    Moussavi G; Mohseni M
    Chemosphere; 2008 Aug; 72(11):1649-54. PubMed ID: 18625512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.