These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 21531844)

  • 41. Bayesian analysis of the effect of selection for residual feed intake on growth and feed intake curves in Yorkshire swine.
    Cai W; Kaiser MS; Dekkers JC
    J Anim Sci; 2012 Jan; 90(1):127-41. PubMed ID: 21873534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling the fate of dietary phosphorus in the digestive tract of growing pigs.
    Létourneau-Montminy MP; Narcy A; Lescoat P; Magnin M; Bernier JF; Sauvant D; Jondreville C; Pomar C
    J Anim Sci; 2011 Nov; 89(11):3596-611. PubMed ID: 21680789
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inevitable losses of phosphorus in pigs, estimated from balance data using diets deficient in phosphorus.
    Rodehutscord M; Haverkamp R; Pfeffer E
    Arch Tierernahr; 1998; 51(1):27-38. PubMed ID: 9638303
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analyses of body weight patterns in growing pigs: a new view on body weight in pigs for frequent monitoring.
    Stygar AH; Dolecheck KA; Kristensen AR
    Animal; 2018 Feb; 12(2):295-302. PubMed ID: 28735585
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accounting for variability among individual pigs in deterministic growth models.
    Vautier B; Quiniou N; van Milgen J; Brossard L
    Animal; 2013 Aug; 7(8):1265-73. PubMed ID: 23552345
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The consequences of introducing stochasticity in nutrient utilisation models: the case of phosphorus utilisation by pigs.
    Symeou V; Leinonen I; Kyriazakis I
    Br J Nutr; 2016 Feb; 115(3):389-98. PubMed ID: 26608351
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantifying the consequences of nutritional strategies aimed at decreasing phosphorus excretion from pig populations: a modeling approach.
    Symeou V; Leinonen I; Kyriazakis I
    Animal; 2016 Apr; 10(4):578-91. PubMed ID: 26988595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Holistic Approach to Evaluating Linear and Non-Linear Mixed Models to Predict Phosphorus Retention in Growing and Finishing Pigs.
    Powell CD; Ellis JL; Dias RS; López S; France J
    Animals (Basel); 2022 Jun; 12(13):. PubMed ID: 35804510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiphasic nonlinear mixed growth models for laying hens.
    van der Klein SAS; Kwakkel RP; Ducro BJ; Zuidhof MJ
    Poult Sci; 2020 Nov; 99(11):5615-5624. PubMed ID: 33142479
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of the biological activities of Saccharomyces cerevisiae-expressed intracellular EGF, extracellular EGF, and tagged EGF in early-weaned pigs.
    Wang S; Guo C; Zhou L; Zhang Z; Huang Y; Yang J; Bai X; Yang K
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7125-35. PubMed ID: 25712680
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Precision livestock farming: real-time estimation of daily protein deposition in growing-finishing pigs.
    Remus A; Hauschild L; Methot S; Pomar C
    Animal; 2020 Aug; 14(S2):s360-s370. PubMed ID: 32583758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flexible alternatives to the Gompertz equation for describing growth with age in turkey hens.
    Porter T; Kebreab E; Darmani Kuhi H; Lopez S; Strathe AB; France J
    Poult Sci; 2010 Feb; 89(2):371-8. PubMed ID: 20075293
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of alternative nonlinear mixed effects models of duck growth.
    Schinckel AP; Adeola O; Einstein ME
    Poult Sci; 2005 Feb; 84(2):256-64. PubMed ID: 15742962
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Effect of various anion and cation concentrations in the diet on the utilization of calcium and phosphorus in swine].
    Jambor V; Procházka Z
    Arch Tierernahr; 1977 Dec; 27(12):701-9. PubMed ID: 603399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lower dietary phosphorus supply in pigs match both animal welfare aspects and resource efficiency.
    Oster M; Gerlinger C; Heide K; Just F; Borgelt L; Wolf P; Polley C; Vollmar B; Muráni E; Ponsuksili S; Wimmers K
    Ambio; 2018 Jan; 47(Suppl 1):20-29. PubMed ID: 29159450
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Some novel growth functions and their application with reference to growth in ostrich.
    Faridi A; López S; Ammar H; Salwa KS; Golian A; Thornley JH; France J
    J Anim Sci; 2015 Jun; 93(6):2641-52. PubMed ID: 26115252
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dietary Phosphorus and Calcium Utilization in Growing Pigs: Requirements and Improvements.
    Lautrou M; Narcy A; Dourmad JY; Pomar C; Schmidely P; Létourneau Montminy MP
    Front Vet Sci; 2021; 8():734365. PubMed ID: 34901241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of nonlinear and spline regression models for describing mule duck growth curves.
    Vitezica ZG; Marie-Etancelin C; Bernadet MD; Fernandez X; Robert-Granie C
    Poult Sci; 2010 Aug; 89(8):1778-84. PubMed ID: 20634537
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nutrition studies with swine; supplemented milk diets for young pigs in cages.
    WEYBREW JA; STEWART HA
    J Anim Sci; 1947 Nov; 6(4):492. PubMed ID: 18932809
    [No Abstract]   [Full Text] [Related]  

  • 60. Lithium and porcine aggression.
    McGlone JJ; Kelley KW; Gaskins CT
    J Anim Sci; 1980 Aug; 51(2):447-55. PubMed ID: 7192279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.