These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 21531920)

  • 1. Solution structure of RNase P RNA.
    Kazantsev AV; Rambo RP; Karimpour S; Santalucia J; Tainer JA; Pace NR
    RNA; 2011 Jun; 17(6):1159-71. PubMed ID: 21531920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme.
    Siew D; Zahler NH; Cassano AG; Strobel SA; Harris ME
    Biochemistry; 1999 Feb; 38(6):1873-83. PubMed ID: 10026268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antisense inhibition of Escherichia coli RNase P RNA: mechanistic aspects.
    Gruegelsiepe H; Willkomm DK; Goudinakis O; Hartmann RK
    Chembiochem; 2003 Oct; 4(10):1049-56. PubMed ID: 14523923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of the 3'-end of tRNA with ribonuclease P RNA.
    Oh BK; Pace NR
    Nucleic Acids Res; 1994 Oct; 22(20):4087-94. PubMed ID: 7524035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the tertiary structure of the ribonuclease P ribozyme-substrate complex by site-specific photoaffinity crosslinking.
    Harris ME; Kazantsev AV; Chen JL; Pace NR
    RNA; 1997 Jun; 3(6):561-76. PubMed ID: 9174092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimeric and monomeric Bacillus subtilis RNase P holoenzyme in the absence and presence of pre-tRNA substrates.
    Barrera A; Fang X; Jacob J; Casey E; Thiyagarajan P; Pan T
    Biochemistry; 2002 Oct; 41(43):12986-94. PubMed ID: 12390025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the architecture of the B. subtilis RNase P holoenzyme active site by cross-linking and affinity cleavage.
    Niranjanakumari S; Day-Storms JJ; Ahmed M; Hsieh J; Zahler NH; Venters RA; Fierke CA
    RNA; 2007 Apr; 13(4):521-35. PubMed ID: 17299131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation.
    Getz MM; Andrews AJ; Fierke CA; Al-Hashimi HM
    RNA; 2007 Feb; 13(2):251-66. PubMed ID: 17194721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli tRNAs are resistant to the hyperprocessing reaction of homologous E. coli ribonuclease P ribozyme.
    Tanaka T; Ando T; Sakai E; Hahisba TA; Hori Y; Kikuchi Y
    Biosci Biotechnol Biochem; 2003 May; 67(5):1172-6. PubMed ID: 12834304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The protein component of bacterial ribonuclease P flickers the metal ion response to the substrate shape preference of the ribozyme.
    Ando T; Tanaka T; Kikuchi Y
    Biosci Biotechnol Biochem; 2003 Oct; 67(10):2294-6. PubMed ID: 14586127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circularly permuted tRNAs as specific photoaffinity probes of ribonuclease P RNA structure.
    Nolan JM; Burke DH; Pace NR
    Science; 1993 Aug; 261(5122):762-5. PubMed ID: 7688143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acquisition of novel catalytic activity by the M1 RNA ribozyme: the cost of molecular adaptation.
    Cole KB; Dorit RL
    J Mol Biol; 1999 Oct; 292(4):931-44. PubMed ID: 10525416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadening the mission of an RNA enzyme.
    Marvin MC; Engelke DR
    J Cell Biochem; 2009 Dec; 108(6):1244-51. PubMed ID: 19844921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage.
    Warnecke JM; Sontheimer EJ; Piccirilli JA; Hartmann RK
    Nucleic Acids Res; 2000 Feb; 28(3):720-7. PubMed ID: 10637323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-EM Structure of the Human Ribonuclease P Holoenzyme.
    Wu J; Niu S; Tan M; Huang C; Li M; Song Y; Wang Q; Chen J; Shi S; Lan P; Lei M
    Cell; 2018 Nov; 175(5):1393-1404.e11. PubMed ID: 30454648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA.
    Kazantsev AV; Krivenko AA; Pace NR
    RNA; 2009 Feb; 15(2):266-76. PubMed ID: 19095619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The catalytic core of RNase P.
    Green CJ; Rivera-León R; Vold BS
    Nucleic Acids Res; 1996 Apr; 24(8):1497-503. PubMed ID: 8628683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a bacterial ribonuclease P RNA.
    Kazantsev AV; Krivenko AA; Harrington DJ; Holbrook SR; Adams PD; Pace NR
    Proc Natl Acad Sci U S A; 2005 Sep; 102(38):13392-7. PubMed ID: 16157868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pentatricopeptide repeats of protein-only RNase P use a distinct mode to recognize conserved bases and structural elements of pre-tRNA.
    Teramoto T; Kaitany KJ; Kakuta Y; Kimura M; Fierke CA; Hall TMT
    Nucleic Acids Res; 2020 Dec; 48(21):11815-11826. PubMed ID: 32719843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of the 5' leader of pre-tRNA substrates by the active site of ribonuclease P.
    Zahler NH; Christian EL; Harris ME
    RNA; 2003 Jun; 9(6):734-45. PubMed ID: 12756331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.