BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21532034)

  • 1. Aberrant epigenetic and genetic marks are seen in myelodysplastic leukocytes and reveal Dock4 as a candidate pathogenic gene on chromosome 7q.
    Zhou L; Opalinska J; Sohal D; Yu Y; Mo Y; Bhagat T; Abdel-Wahab O; Fazzari M; Figueroa M; Alencar C; Zhang J; Kambhampati S; Parmar S; Nischal S; Hueck C; Suzuki M; Freidman E; Pellagatti A; Boultwood J; Steidl U; Sauthararajah Y; Yajnik V; McMahon C; Gore SD; Platanias LC; Levine R; Melnick A; Wickrema A; Greally JM; Verma A
    J Biol Chem; 2011 Jul; 286(28):25211-23. PubMed ID: 21532034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced DOCK4 expression leads to erythroid dysplasia in myelodysplastic syndromes.
    Sundaravel S; Duggan R; Bhagat T; Ebenezer DL; Liu H; Yu Y; Bartenstein M; Unnikrishnan M; Karmakar S; Liu TC; Torregroza I; Quenon T; Anastasi J; McGraw KL; Pellagatti A; Boultwood J; Yajnik V; Artz A; Le Beau MM; Steidl U; List AF; Evans T; Verma A; Wickrema A
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):E6359-68. PubMed ID: 26578796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of Function of DOCK4 in Myelodysplastic Syndromes Stem Cells is Restored by Inhibitors of DOCK4 Signaling Networks.
    Sundaravel S; Kuo WL; Jeong JJ; Choudhary GS; Gordon-Mitchell S; Liu H; Bhagat TD; McGraw KL; Gurbuxani S; List AF; Verma A; Wickrema A
    Clin Cancer Res; 2019 Sep; 25(18):5638-5649. PubMed ID: 31308061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetically Aberrant Stroma in MDS Propagates Disease via Wnt/β-Catenin Activation.
    Bhagat TD; Chen S; Bartenstein M; Barlowe AT; Von Ahrens D; Choudhary GS; Tivnan P; Amin E; Marcondes AM; Sanders MA; Hoogenboezem RM; Kambhampati S; Ramachandra N; Mantzaris I; Sukrithan V; Laurence R; Lopez R; Bhagat P; Giricz O; Sohal D; Wickrema A; Yeung C; Gritsman K; Aplan P; Hochedlinger K; Yu Y; Pradhan K; Zhang J; Greally JM; Mukherjee S; Pellagatti A; Boultwood J; Will B; Steidl U; Raaijmakers MHGP; Deeg HJ; Kharas MG; Verma A
    Cancer Res; 2017 Sep; 77(18):4846-4857. PubMed ID: 28684528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide profiling of methylation identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes.
    del Rey M; O'Hagan K; Dellett M; Aibar S; Colyer HA; Alonso ME; Díez-Campelo M; Armstrong RN; Sharpe DJ; Gutiérrez NC; García JL; De Las Rivas J; Mills KI; Hernández-Rivas JM
    Leukemia; 2013 Mar; 27(3):610-8. PubMed ID: 22936014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations.
    Will B; Zhou L; Vogler TO; Ben-Neriah S; Schinke C; Tamari R; Yu Y; Bhagat TD; Bhattacharyya S; Barreyro L; Heuck C; Mo Y; Parekh S; McMahon C; Pellagatti A; Boultwood J; Montagna C; Silverman L; Maciejewski J; Greally JM; Ye BH; List AF; Steidl C; Steidl U; Verma A
    Blood; 2012 Sep; 120(10):2076-86. PubMed ID: 22753872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of differential mitotic cell age in bone marrow CD34(+) cells from patients with myelodysplastic syndrome and acute leukemia by analysis of an epigenetic molecular clock DNA signature.
    Mossner M; Hopfer O; Nowak D; Baldus CD; Neumann U; Kmetsch A; Benlasfer O; John T; Perka C; Thiel E; Hofmann WK
    Exp Hematol; 2010 Aug; 38(8):661-5. PubMed ID: 20399247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of hypermethylation of cell cycle control and DNA-mismatch repair genes in low-density and CD34+ bone marrow cells from patients with myelodysplastic syndrome.
    Hofmann WK; Takeuchi S; Takeuchi N; Thiel E; Hoelzer D; Koeffler HP
    Leuk Res; 2006 Nov; 30(11):1347-53. PubMed ID: 16682076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Distribution of abnormal cell clone with deletion of chromosome 20q in marrow cell lineages and apoptosis cells in myelodysplastic syndrome].
    Qin L; Wang C; Qin YW; Xie KC; Yan SK; Gao YR; Wang XR; Zhao CX
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2008 Jun; 16(3):551-4. PubMed ID: 18549627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular pathogenesis of the myelodysplastic syndromes.
    Pellagatti A; Boultwood J
    Eur J Haematol; 2015 Jul; 95(1):3-15. PubMed ID: 25645650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allelotype analysis of the myelodysplastic syndrome.
    Xie D; Hofmann WK; Mori N; Miller CW; Hoelzer D; Koeffler HP
    Leukemia; 2000 May; 14(5):805-10. PubMed ID: 10803510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical chromosomal changes and risk of development of myelodysplastic syndrome--acute myeloid leukemia in patients with Fanconi anemia.
    Mehta PA; Harris RE; Davies SM; Kim MO; Mueller R; Lampkin B; Mo J; Myers K; Smolarek TA
    Cancer Genet Cytogenet; 2010 Dec; 203(2):180-6. PubMed ID: 21156231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of combinatorial dysfunctions of Tet2 and Ezh2 on the epigenome in the pathogenesis of myelodysplastic syndrome.
    Hasegawa N; Oshima M; Sashida G; Matsui H; Koide S; Saraya A; Wang C; Muto T; Takane K; Kaneda A; Shimoda K; Nakaseko C; Yokote K; Iwama A
    Leukemia; 2017 Apr; 31(4):861-871. PubMed ID: 27694924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylation status of the p15INK4B gene in hematopoietic progenitors and peripheral blood cells in myelodysplastic syndromes.
    Aoki E; Uchida T; Ohashi H; Nagai H; Murase T; Ichikawa A; Yamao K; Hotta T; Kinoshita T; Saito H; Murate T
    Leukemia; 2000 Apr; 14(4):586-93. PubMed ID: 10764143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dyserythropoiesis of myelodysplastic syndromes.
    Lefèvre C; Bondu S; Le Goff S; Kosmider O; Fontenay M
    Curr Opin Hematol; 2017 May; 24(3):191-197. PubMed ID: 28072603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells.
    Pellagatti A; Cazzola M; Giagounidis A; Perry J; Malcovati L; Della Porta MG; Jädersten M; Killick S; Verma A; Norbury CJ; Hellström-Lindberg E; Wainscoat JS; Boultwood J
    Leukemia; 2010 Apr; 24(4):756-64. PubMed ID: 20220779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities.
    Chen G; Zeng W; Miyazato A; Billings E; Maciejewski JP; Kajigaya S; Sloand EM; Young NS
    Blood; 2004 Dec; 104(13):4210-8. PubMed ID: 15315976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for two molecular steps in the pathogenesis of myeloid disorders associated with deletion of chromosome 7 long arm.
    Kiuru-Kuhlefelt S; Kristo P; Ruutu T; Knuutila S; Kere J
    Leukemia; 1997 Dec; 11(12):2097-104. PubMed ID: 9447826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physician Education: Myelodysplastic Syndrome.
    Yoshida Y
    Oncologist; 1996; 1(4):284-287. PubMed ID: 10388004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutic discovery for marrow failure with MDS predisposition using pluripotent stem cells.
    Ruiz-Gutierrez M; Bölükbaşı ÖV; Alexe G; Kotini AG; Ballotti K; Joyce CE; Russell DW; Stegmaier K; Myers K; Novina CD; Papapetrou EP; Shimamura A
    JCI Insight; 2019 Apr; 5(12):. PubMed ID: 31039138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.