BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21532341)

  • 1. Kir4.1 K+ channels are regulated by external cations.
    Edvinsson JM; Shah AJ; Palmer LG
    Channels (Austin); 2011; 5(3):269-79. PubMed ID: 21532341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia.
    Tang X; Schmidt TM; Perez-Leighton CE; Kofuji P
    Neuroscience; 2010 Mar; 166(2):397-407. PubMed ID: 20074622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ligand-sensitive gate of a potassium channel lies close to the selectivity filter.
    Proks P; Antcliff JF; Ashcroft FM
    EMBO Rep; 2003 Jan; 4(1):70-5. PubMed ID: 12524524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling.
    Dahlmann A; Li M; Gao Z; McGarrigle D; Sackin H; Palmer LG
    J Gen Physiol; 2004 Apr; 123(4):441-54. PubMed ID: 15051808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K.
    Lam YL; Zeng W; Sauer DB; Jiang Y
    J Gen Physiol; 2014 Aug; 144(2):181-92. PubMed ID: 25024267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium-dependent activation of Kir4.2 K⁺ channels.
    Edvinsson JM; Shah AJ; Palmer LG
    J Physiol; 2011 Dec; 589(Pt 24):5949-63. PubMed ID: 22025665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes.
    Kucheryavykh YV; Kucheryavykh LY; Nichols CG; Maldonado HM; Baksi K; Reichenbach A; Skatchkov SN; Eaton MJ
    Glia; 2007 Feb; 55(3):274-81. PubMed ID: 17091490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. External Ba2+ block of the two-pore domain potassium channel TREK-1 defines conformational transition in its selectivity filter.
    Ma XY; Yu JM; Zhang SZ; Liu XY; Wu BH; Wei XL; Yan JQ; Sun HL; Yan HT; Zheng JQ
    J Biol Chem; 2011 Nov; 286(46):39813-22. PubMed ID: 21965685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion selectivity and current saturation in inward-rectifier K+ channels.
    Yang L; Edvinsson J; Sackin H; Palmer LG
    J Gen Physiol; 2012 Feb; 139(2):145-57. PubMed ID: 22291146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of external K+ and internal blockers in a weak inward-rectifier K+ channel.
    Yang L; Edvinsson J; Palmer LG
    J Gen Physiol; 2012 Nov; 140(5):529-40. PubMed ID: 23109715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner.
    Kanjhan R; Coulson EJ; Adams DJ; Bellingham MC
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1353-61. PubMed ID: 15947038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeance of Cs+ and Rb+ through the inwardly rectifying K+ channel in guinea pig ventricular myocytes.
    Mitra RL; Morad M
    J Membr Biol; 1991 May; 122(1):33-42. PubMed ID: 1875400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a multi-ion pore behavior in the plant potassium channel KAT1.
    Lacombe B; Thibaud JB
    J Membr Biol; 1998 Nov; 166(2):91-100. PubMed ID: 9841734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeant ion effects on the gating kinetics of the type L potassium channel in mouse lymphocytes.
    Shapiro MS; DeCoursey TE
    J Gen Physiol; 1991 Jun; 97(6):1251-78. PubMed ID: 1875189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K+ channel to K(+)-selective permeation.
    Reuveny E; Jan YN; Jan LY
    Biophys J; 1996 Feb; 70(2):754-61. PubMed ID: 8789092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permeation and gating of an inwardly rectifying potassium channel. Evidence for a variable energy well.
    Choe H; Sackin H; Palmer LG
    J Gen Physiol; 1998 Oct; 112(4):433-46. PubMed ID: 9758862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gating properties of inward-rectifier potassium channels: effects of permeant ions.
    Choe H; Sackin H; Palmer LG
    J Membr Biol; 2001 Nov; 184(1):81-9. PubMed ID: 11687881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function.
    Huang C; Sindic A; Hill CE; Hujer KM; Chan KW; Sassen M; Wu Z; Kurachi Y; Nielsen S; Romero MF; Miller RT
    Am J Physiol Renal Physiol; 2007 Mar; 292(3):F1073-81. PubMed ID: 17122384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increase in the titer of lentiviral vectors expressing potassium channels by current blockade during viral vector production.
    Okada M; Andharia N; Matsuda H
    BMC Neurosci; 2015 May; 16():30. PubMed ID: 25940378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and expression of an inwardly rectifying K(+) channel from bovine corneal endothelial cells.
    Yang D; Sun F; Thomas LL; Offord J; MacCallum DK; Dawson DC; Hughes BA; Ernst SA
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2936-44. PubMed ID: 10967048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.