BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 21532473)

  • 1. The value of positive end-expiratory pressure and Fio₂ criteria in the definition of the acute respiratory distress syndrome.
    Britos M; Smoot E; Liu KD; Thompson BT; Checkley W; Brower RG;
    Crit Care Med; 2011 Sep; 39(9):2025-30. PubMed ID: 21532473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of PaO₂/FiO₂ for stratification of patients with moderate and severe acute respiratory distress syndrome.
    Villar J; Blanco J; del Campo R; Andaluz-Ojeda D; Díaz-Domínguez FJ; Muriel A; Córcoles V; Suárez-Sipmann F; Tarancón C; González-Higueras E; López J; Blanch L; Pérez-Méndez L; Fernández RL; Kacmarek RM;
    BMJ Open; 2015 Mar; 5(3):e006812. PubMed ID: 25818272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sustained inflation and postinflation positive end-expiratory pressure in acute respiratory distress syndrome: focusing on pulmonary and extrapulmonary forms.
    Tugrul S; Akinci O; Ozcan PE; Ince S; Esen F; Telci L; Akpir K; Cakar N
    Crit Care Med; 2003 Mar; 31(3):738-44. PubMed ID: 12626977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive end-expiratory pressure-induced functional recruitment in patients with acute respiratory distress syndrome.
    Di Marco F; Devaquet J; Lyazidi A; Galia F; da Costa NP; Fumagalli R; Brochard L
    Crit Care Med; 2010 Jan; 38(1):127-32. PubMed ID: 19730254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lung recruitability is better estimated according to the Berlin definition of acute respiratory distress syndrome at standard 5 cm H2O rather than higher positive end-expiratory pressure: a retrospective cohort study.
    Caironi P; Carlesso E; Cressoni M; Chiumello D; Moerer O; Chiurazzi C; Brioni M; Bottino N; Lazzerini M; Bugedo G; Quintel M; Ranieri VM; Gattinoni L
    Crit Care Med; 2015 Apr; 43(4):781-90. PubMed ID: 25513785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved oxygenation 24 hours after transition to airway pressure release ventilation or high-frequency oscillatory ventilation accurately discriminates survival in immunocompromised pediatric patients with acute respiratory distress syndrome*.
    Yehya N; Topjian AA; Thomas NJ; Friess SH
    Pediatr Crit Care Med; 2014 May; 15(4):e147-56. PubMed ID: 24413319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinicians' approaches to mechanical ventilation in acute lung injury and ARDS.
    Thompson BT; Hayden D; Matthay MA; Brower R; Parsons PE
    Chest; 2001 Nov; 120(5):1622-7. PubMed ID: 11713144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpO2/FiO2 ratio on hospital admission is an indicator of early acute respiratory distress syndrome development among patients at risk.
    Festic E; Bansal V; Kor DJ; Gajic O;
    J Intensive Care Med; 2015 May; 30(4):209-16. PubMed ID: 24362445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.
    Meade MO; Cook DJ; Guyatt GH; Slutsky AS; Arabi YM; Cooper DJ; Davies AR; Hand LE; Zhou Q; Thabane L; Austin P; Lapinsky S; Baxter A; Russell J; Skrobik Y; Ronco JJ; Stewart TE;
    JAMA; 2008 Feb; 299(6):637-45. PubMed ID: 18270352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors associated with elevated plateau pressure in patients with acute lung injury receiving lower tidal volume ventilation.
    Prescott HC; Brower RG; Cooke CR; Phillips G; O'Brien JM;
    Crit Care Med; 2013 Mar; 41(3):756-64. PubMed ID: 23328258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of high positive end-expiratory pressure combined with recruitment maneuvers in patients with acute respiratory distress syndrome].
    Yang GH; Wang CY; Ning R
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2011 Jan; 23(1):28-31. PubMed ID: 21251363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support.
    Mauri T; Bellani G; Confalonieri A; Tagliabue P; Turella M; Coppadoro A; Citerio G; Patroniti N; Pesenti A
    Crit Care Med; 2013 Jul; 41(7):1664-73. PubMed ID: 23507723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FiO2 and positive end-expiratory pressure as compensation for altitude-induced hypoxemia in an acute respiratory distress syndrome model: implications for air transportation of critically ill patients.
    Lawless N; Tobias S; Mayorga MA
    Crit Care Med; 2001 Nov; 29(11):2149-55. PubMed ID: 11700412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adherence to Lung-Protective Ventilation Principles in Pediatric Acute Respiratory Distress Syndrome: A Pediatric Acute Respiratory Distress Syndrome Incidence and Epidemiology Study.
    Bhalla AK; Klein MJ; Emeriaud G; Lopez-Fernandez YM; Napolitano N; Fernandez A; Al-Subu AM; Gedeit R; Shein SL; Nofziger R; Hsing DD; Briassoulis G; Ilia S; Baudin F; Piñeres-Olave BE; Maria Izquierdo L; Lin JC; Cheifetz IM; Kneyber MCJ; Smith L; Khemani RG; Newth CJL;
    Crit Care Med; 2021 Oct; 49(10):1779-1789. PubMed ID: 34259438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moderate and Severe Acute Respiratory Distress Syndrome: Hemodynamic and Cardiac Effects of an Open Lung Strategy With Recruitment Maneuver Analyzed Using Echocardiography.
    Mercado P; Maizel J; Kontar L; Nalos M; Huang S; Orde S; McLean A; Slama M
    Crit Care Med; 2018 Oct; 46(10):1608-1616. PubMed ID: 30028364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis.
    Sud S; Friedrich JO; Taccone P; Polli F; Adhikari NK; Latini R; Pesenti A; Guérin C; Mancebo J; Curley MA; Fernandez R; Chan MC; Beuret P; Voggenreiter G; Sud M; Tognoni G; Gattinoni L
    Intensive Care Med; 2010 Apr; 36(4):585-99. PubMed ID: 20130832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Titrating Positive End-Expiratory Pressure (PEEP) With an Esophageal Pressure-Guided Strategy vs an Empirical High PEEP-Fio2 Strategy on Death and Days Free From Mechanical Ventilation Among Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial.
    Beitler JR; Sarge T; Banner-Goodspeed VM; Gong MN; Cook D; Novack V; Loring SH; Talmor D;
    JAMA; 2019 Mar; 321(9):846-857. PubMed ID: 30776290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparative study of recruitment maneuver guided by pressure-volume curve on respiratory physiology and lung morphology between acute respiratory distress syndrome of pulmonary and extrapulmonary origin in canine models].
    Xiong XM; Wen DL; Wen YC; Liu WJ
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2011 Jan; 23(1):36-9. PubMed ID: 21251365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume Delivered During Recruitment Maneuver Predicts Lung Stress in Acute Respiratory Distress Syndrome.
    Beitler JR; Majumdar R; Hubmayr RD; Malhotra A; Thompson BT; Owens RL; Loring SH; Talmor D
    Crit Care Med; 2016 Jan; 44(1):91-9. PubMed ID: 26474111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of recruitment maneuvers with low tidal volume ventilation in patients with acute respiratory distress syndrome].
    Yi L; Xi XM
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2005 Aug; 17(8):472-6. PubMed ID: 16105425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.