These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 21532657)

  • 1. Effective random laser action in Rhodamine 6G solution with Al nanoparticles.
    Yang L; Feng G; Yi J; Yao K; Deng G; Zhou S
    Appl Opt; 2011 May; 50(13):1816-21. PubMed ID: 21532657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conventional unidirectional laser action enhanced by dye confined in nanoparticle scatters.
    Enciso E; Costela A; Garcia-Moreno I; Martin V; Sastre R
    Langmuir; 2010 May; 26(9):6154-7. PubMed ID: 20387817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emission of Au nanoparticles with and without rhodamine 6G dye.
    Zhu G; Gavrilenko VI; Noginov MA
    J Chem Phys; 2007 Sep; 127(10):104503. PubMed ID: 17867757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of laser-induced size-reduction of gold nanoparticles as studied by nanosecond transient absorption spectroscopy.
    Yamada K; Tokumoto Y; Nagata T; Mafuné F
    J Phys Chem B; 2006 Jun; 110(24):11751-6. PubMed ID: 16800473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real time random laser properties of Rhodamine-doped di-ureasil hybrids.
    Pecoraro E; García-Revilla S; Ferreira RA; Balda R; Carlos LD; Fernández J
    Opt Express; 2010 Mar; 18(7):7470-8. PubMed ID: 20389769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering.
    Lin CH; Jiang L; Zhou J; Xiao H; Chen SJ; Tsai HL
    Opt Lett; 2010 Apr; 35(7):941-3. PubMed ID: 20364177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent anti-stokes/stokes ratios under surface-enhanced Raman scattering conditions.
    Maher RC; Cohen LF; Gallop JC; Le Ru EC; Etchegoin PG
    J Phys Chem B; 2006 Apr; 110(13):6797-803. PubMed ID: 16570987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation states of rhodamine 6G in electrospun nanofibrous films.
    Wang H; Yang Q; Sun L; Wang S; Wang W; Zhang C; Li Y; Xu S; Li Y
    J Colloid Interface Sci; 2010 Jan; 341(2):224-31. PubMed ID: 19857874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of temperature effects on the lasing characteristics of rhodamine cw dye lasers.
    Ali MA; Moghaddasi J; Ahmed SA
    Appl Opt; 1990 Sep; 29(27):3945-9. PubMed ID: 20577318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially inhomogeneous enhancement of fluorescence by a monolayer of silver nanoparticles.
    Ianoul A; Bergeron A
    Langmuir; 2006 Nov; 22(24):10217-22. PubMed ID: 17107024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation and thermal evolution of rhodamine 6G dye molecules adsorbed in porous columnar optical SiO2 thin films.
    Sánchez-Valencia JR; Blaszczyk-Lezak I; Espinós JP; Hamad S; González-Elipe AR; Barranco A
    Langmuir; 2009 Aug; 25(16):9140-8. PubMed ID: 19492783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer.
    Inasawa S; Sugiyama M; Noda S; Yamaguchi Y
    J Phys Chem B; 2006 Feb; 110(7):3114-9. PubMed ID: 16494317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media.
    Sha WL; Liu CH; Alfano RR
    Opt Lett; 1994 Dec; 19(23):1922-4. PubMed ID: 19855696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NTP Toxicology and Carcinogenesis Studies of Rhodamine 6G (C.I. Basic Red 1) (CAS No. 989-38-8) in F344/N Rats and B6C3F1 Mice (Feed Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1989 Sep; 364():1-192. PubMed ID: 12692640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodamine 6G and 800 J-heteroaggregates with enhanced acceptor luminescence (HEAL) adsorbed in transparent SiO2 GLAD thin films.
    Sánchez-Valencia JR; Aparicio FJ; Espinós JP; Gonzalez-Elipe AR; Barranco A
    Phys Chem Chem Phys; 2011 Apr; 13(15):7071-82. PubMed ID: 21394368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fluorescence quenching assay of ultratrace horseradish peroxidase using rhodamine dye].
    Ma WS; Huang GX; Liang AH; Jiang ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):759-61. PubMed ID: 19455817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering.
    Liu T; Xiao X; Yang C
    Langmuir; 2011 Apr; 27(8):4623-6. PubMed ID: 21438520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media.
    Zeng H; Cai W; Li Y; Hu J; Liu P
    J Phys Chem B; 2005 Oct; 109(39):18260-6. PubMed ID: 16853349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Rhodamine 6G association particle based spectrophotometric determination of hydroxy free radical and its application to the selection of antioxidant].
    Liang AH; Jiang ZL; Zhou SM; Zhou YC; Liang YY; Chen LY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Nov; 26(11):2113-5. PubMed ID: 17260770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.