These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21532662)

  • 1. Polymeric optofluidic Fabry-Perot sensor by direct laser machining and hot embossing.
    Wu J; Day D; Gu M
    Appl Opt; 2011 May; 50(13):1843-9. PubMed ID: 21532662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-fiber, long-active-length Fabry-Perot strain sensor.
    Pevec S; Donlagic D
    Opt Express; 2011 Aug; 19(16):15641-51. PubMed ID: 21934926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refractive micro-optical elements for surface plasmons: from classical to gradient index optics.
    Devaux E; Laluet JY; Stein B; Genet C; Ebbesen T; Weeber JC; Dereux A
    Opt Express; 2010 Sep; 18(20):20610-9. PubMed ID: 20940955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-step replication of a highly integrated PDMS optofluidic analysis system.
    Amberg M; Stoebenau S; Sinzinger S
    Appl Opt; 2010 Aug; 49(22):4326-30. PubMed ID: 20676190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Measurement of Refractive Index Using 3D-Printed Optofluidic Fiber Sensor.
    Leça JM; Magalhães Y; Antunes P; Pereira V; Ferreira MS
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index.
    Ran ZL; Rao YJ; Liu WJ; Liao X; Chiang KS
    Opt Express; 2008 Feb; 16(3):2252-63. PubMed ID: 18542305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared optical response of thin film pH-sensitive hydrogel coated on a gold nanocrescent array.
    Jiang H; Markowski J; Sabarinathan J
    Opt Express; 2009 Nov; 17(24):21802-7. PubMed ID: 19997424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices.
    Zhang Z; Wang X; Luo Y; He S; Wang L
    Talanta; 2010 Jun; 81(4-5):1331-8. PubMed ID: 20441903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile optofluidic ring resonator lasers based on microdroplets.
    Lee W; Luo Y; Zhu Q; Fan X
    Opt Express; 2011 Sep; 19(20):19668-74. PubMed ID: 21996908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic refractometric sensor based on gratings in optical fibre microwires.
    Xu F; Brambilla G; Lu Y
    Opt Express; 2009 Nov; 17(23):20866-71. PubMed ID: 19997322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding.
    Abgrall P; Low LN; Nguyen NT
    Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser direct writing of a 3D microcantilever on the tip of an optical fiber sensor for on-chip optofluidic sensing.
    Li C; Liu Y; Lang C; Zhang Y; Qu S
    Lab Chip; 2022 Sep; 22(19):3734-3743. PubMed ID: 36039614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of polymer microfluidic systems by hot embossing and laser ablation.
    Locascio LE; Ross DJ; Howell PB; Gaitan M
    Methods Mol Biol; 2006; 339():37-46. PubMed ID: 16790865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive label-free coupled optofluidic ring laser sensor.
    Ren L; Wu X; Li M; Zhang X; Liu L; Xu L
    Opt Lett; 2012 Sep; 37(18):3873-5. PubMed ID: 23041888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating.
    Hanada Y; Sugioka K; Midorikawa K
    Lab Chip; 2012 Oct; 12(19):3688-93. PubMed ID: 22814524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel.
    Maselli V; Grenier JR; Ho S; Herman PR
    Opt Express; 2009 Jul; 17(14):11719-29. PubMed ID: 19582086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferring vertically aligned carbon nanotubes onto a polymeric substrate using a hot embossing technique for microfluidic applications.
    Mathur A; Roy SS; McLaughlin JA
    J R Soc Interface; 2010 Jul; 7(48):1129-33. PubMed ID: 20147316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melt-processed all-polymer distributed Bragg reflector laser.
    Singer KD; Kazmierczak T; Lott J; Song H; Wu Y; Andrews J; Baer E; Hiltner A; Weder C
    Opt Express; 2008 Jul; 16(14):10358-63. PubMed ID: 18607446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical sensing with a polymer-based micromachined Fabry-Perot sensor.
    Zhang T; Talla S; Gong Z; Karandikar S; Giorno R; Que L
    Opt Express; 2010 Aug; 18(17):18394-400. PubMed ID: 20721233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-optic polymer spatial light modulator based on a Fabry-Perot interferometer configuration.
    Greenlee C; Luo J; Leedy K; Bayraktaroglu B; Norwood RA; Fallahi M; Jen AK; Peyghambarian N
    Opt Express; 2011 Jun; 19(13):12750-8. PubMed ID: 21716517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.