BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 21532671)

  • 1. Twin mirrors for laser interferometric gravitational-wave detectors.
    Sassolas B; Benoît Q; Flaminio R; Forest D; Franc J; Galimberti M; Lacoudre A; Michel C; Montorio JL; Morgado N; Pinard L
    Appl Opt; 2011 May; 50(13):1894-9. PubMed ID: 21532671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shot noise in gravitational-wave detectors with Fabry-Perot arms.
    Lyons TT; Regehr MW; Raab FJ
    Appl Opt; 2000 Dec; 39(36):6761-70. PubMed ID: 18354690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of light noise sources in a recycled Michelson interferometer with Fabry-Perot arms.
    Camp JB; Yamamoto H; Whitcomb SE; McClelland DE
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jan; 17(1):120-8. PubMed ID: 10641846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angular instability due to radiation pressure in the LIGO gravitational-wave detector.
    Hirose E; Kawabe K; Sigg D; Adhikari R; Saulson PR
    Appl Opt; 2010 Jun; 49(18):3474-84. PubMed ID: 20563200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High bandwidth frequency lock of a rigid tunable optical cavity.
    Millo J; Merzougui M; Di Pace S; Chaibi W
    Appl Opt; 2014 Nov; 53(32):7761-72. PubMed ID: 25403002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of upconverted scattered light on advanced interferometric gravitational wave detectors.
    Ottaway DJ; Fritschel P; Waldman SJ
    Opt Express; 2012 Apr; 20(8):8329-36. PubMed ID: 22513544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Mechanical Loss TiO_{2}:GeO_{2} Coatings for Reduced Thermal Noise in Gravitational Wave Interferometers.
    Vajente G; Yang L; Davenport A; Fazio M; Ananyeva A; Zhang L; Billingsley G; Prasai K; Markosyan A; Bassiri R; Fejer MM; Chicoine M; Schiettekatte F; Menoni CS
    Phys Rev Lett; 2021 Aug; 127(7):071101. PubMed ID: 34459624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers.
    Mullavey AJ; Slagmolen BJ; Miller J; Evans M; Fritschel P; Sigg D; Waldman SJ; Shaddock DA; McClelland DE
    Opt Express; 2012 Jan; 20(1):81-9. PubMed ID: 22274331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Damping and local control of mirror suspensions for laser interferometric gravitational wave detectors.
    Strain KA; Shapiro BN
    Rev Sci Instrum; 2012 Apr; 83(4):044501. PubMed ID: 22559557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mirror-orientation noise in a Fabry-Perot interferometer gravitational wave detector.
    Kawamura S; Zucker ME
    Appl Opt; 1994 Jun; 33(18):3912-8. PubMed ID: 20935736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shot-noise-limited control-loop noise in an interferometer with multiple degrees of freedom.
    Somiya K; Miyakawa O
    Appl Opt; 2010 Aug; 49(23):4335-42. PubMed ID: 20697434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors.
    De Rosa M; Conti L; Cerdonio M; Pinard M; Marin F
    Phys Rev Lett; 2002 Dec; 89(23):237402. PubMed ID: 12485040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lock acquisition of a gravitational-wave interferometer.
    Evans M; Mavalvala N; Fritschel P; Bork R; Bhawal B; Gustafson R; Kells W; Landry M; Sigg D; Weiss R; Whitcomb S; Yamamoto H
    Opt Lett; 2002 Apr; 27(8):598-600. PubMed ID: 18007874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interferometric antenna response for gravitational-wave detection.
    Fabbro RD; Montelatici V
    Appl Opt; 1995 Jul; 34(21):4380-96. PubMed ID: 21052273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions.
    Heptonstall A; Barton MA; Bell A; Cagnoli G; Cantley CA; Crooks DR; Cumming A; Grant A; Hammond GD; Harry GM; Hough J; Jones R; Kelley D; Kumar R; Martin IW; Robertson NA; Rowan S; Strain KA; Tokmakov K; van Veggel M
    Rev Sci Instrum; 2011 Jan; 82(1):011301. PubMed ID: 21280809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small-Sized Interferometer with Fabry-Perot Resonators for Gravitational Wave Detection.
    Petrov N; Pustovoit V
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Readout and control of a power-recycled interferometric gravitational-wave antenna.
    Fritschel P; Bork R; González G; Mavalvala N; Ouimette D; Rong H; Sigg D; Zucker M
    Appl Opt; 2001 Oct; 40(28):4988-98. PubMed ID: 18364777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mirrors used in the LIGO interferometers for first detection of gravitational waves.
    Pinard L; Michel C; Sassolas B; Balzarini L; Degallaix J; Dolique V; Flaminio R; Forest D; Granata M; Lagrange B; Straniero N; Teillon J; Cagnoli G
    Appl Opt; 2017 Feb; 56(4):C11-C15. PubMed ID: 28158044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation pressure and stability of interferometric gravitational-wave detectors.
    Chickarmane V; Dhurandhar SV; Barillet R; Hello P; Vinet JY
    Appl Opt; 1998 May; 37(15):3236-45. PubMed ID: 18273275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors.
    Cumming A; Jones R; Barton M; Cagnoli G; Cantley CA; Crooks DR; Hammond GD; Heptonstall A; Hough J; Rowan S; Strain KA
    Rev Sci Instrum; 2011 Apr; 82(4):044502. PubMed ID: 21529026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.