These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 21532684)
1. Numerical approach for computing the Jacobian matrix between boundary variable vector and system variable vector for optical systems containing prisms. Wu W; Lin PD J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):747-58. PubMed ID: 21532684 [TBL] [Abstract][Full Text] [Related]
2. Analysis and design of prisms using the derivatives of a ray. Part II: the derivatives of boundary variable vector with respect to system variable vector. Lin PD Appl Opt; 2013 Jun; 52(18):4151-62. PubMed ID: 23842155 [TBL] [Abstract][Full Text] [Related]
3. Second-order derivatives of a ray with respect to the variables of its source ray in optical systems containing spherical boundary surfaces. Lin PD J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):1995-2005. PubMed ID: 21979504 [TBL] [Abstract][Full Text] [Related]
4. Determination of first-order derivative matrix of wavefront aberration with respect to system variables. Lin PD Appl Opt; 2012 Feb; 51(4):486-93. PubMed ID: 22307119 [TBL] [Abstract][Full Text] [Related]
5. Second-order derivatives of optical path length of ray with respect to variable vector of source ray. Chen YB; Lin PD Appl Opt; 2012 Aug; 51(22):5552-62. PubMed ID: 22859047 [TBL] [Abstract][Full Text] [Related]
6. Design of optical systems using derivatives of rays: derivatives of variable vector of spherical boundary surfaces with respect to system variable vector. Lin PD Appl Opt; 2013 Oct; 52(30):7271-87. PubMed ID: 24216581 [TBL] [Abstract][Full Text] [Related]
7. First-order derivative matrix of a ray: a simple and flexible alternative computation method. Lin PD Opt Express; 2019 Nov; 27(24):35402-35417. PubMed ID: 31878711 [TBL] [Abstract][Full Text] [Related]
8. Determination of second-order derivatives of a skew ray with respect to the variables of its source ray in optical prism systems. Lin PD; Wu W J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1600-9. PubMed ID: 21811322 [TBL] [Abstract][Full Text] [Related]
9. Analysis and design of prisms using the derivatives of a ray. Part I: derivatives of a ray with respect to boundary variable vector. Lin PD Appl Opt; 2013 Jun; 52(18):4137-50. PubMed ID: 23842154 [TBL] [Abstract][Full Text] [Related]
10. Derivatives of optical path length: from mathematical formulation to applications. Lin PD J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):710-7. PubMed ID: 26366893 [TBL] [Abstract][Full Text] [Related]
11. Jacobian and Hessian matrices of optical path length for computing the wavefront shape, irradiance, and caustics in optical systems. Lin PD; Liu CS J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2272-80. PubMed ID: 23201787 [TBL] [Abstract][Full Text] [Related]
12. Derivative matrices of a skew ray for spherical boundary surfaces and their applications in system analysis and design. Lin PD Appl Opt; 2014 May; 53(14):3085-100. PubMed ID: 24922031 [TBL] [Abstract][Full Text] [Related]
13. Determination of caustic surfaces using point spread function and ray Jacobian and Hessian matrices. Lin PD Appl Opt; 2014 Sep; 53(26):5889-95. PubMed ID: 25321667 [TBL] [Abstract][Full Text] [Related]
14. Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform. Wang X; Peng J; Li M; Shen Z; Shan O Appl Opt; 2010 Apr; 49(12):2352-62. PubMed ID: 20411016 [TBL] [Abstract][Full Text] [Related]
15. Simple and practical approach for computing the ray Hessian matrix in geometrical optics. Lin PD J Opt Soc Am A Opt Image Sci Vis; 2018 Feb; 35(2):210-220. PubMed ID: 29400875 [TBL] [Abstract][Full Text] [Related]
16. Application of derivative matrices of skew rays to design of compound dispersion prisms. Lin PD J Opt Soc Am A Opt Image Sci Vis; 2016 Sep; 33(9):1843-50. PubMed ID: 27607509 [TBL] [Abstract][Full Text] [Related]
17. Parametrization of analytic interatomic potential functions using neural networks. Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnam S; Komanduri R J Chem Phys; 2008 Jul; 129(4):044111. PubMed ID: 18681638 [TBL] [Abstract][Full Text] [Related]
18. Paraxial ray-tracing equations for optical systems containing triangular prisms. Lin PD; Tsai CY J Opt Soc Am A Opt Image Sci Vis; 2017 Mar; 34(3):361-369. PubMed ID: 28248363 [TBL] [Abstract][Full Text] [Related]
19. Robust processing of optical flow of fluids. Doshi A; Bors AG IEEE Trans Image Process; 2010 Sep; 19(9):2332-44. PubMed ID: 20409993 [TBL] [Abstract][Full Text] [Related]
20. Prism design based on changes in image orientation. Tsai CY; Lin PD Appl Opt; 2006 Jun; 45(17):3951-9. PubMed ID: 16761032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]