These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21532969)

  • 21. A Personalized Diagnosis Method to Detect Faults in a Bearing Based on Acceleration Sensors and an FEM Simulation Driving Support Vector Machine.
    Liu X; Huang H; Xiang J
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31940822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Application of support vector machines to classification of blood cells].
    Wang H; Zheng C; Li Y; Zhu H; Yan X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):484-7. PubMed ID: 14565019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine Learning Algorithms and Fault Detection for Improved Belief Function Based Decision Fusion in Wireless Sensor Networks.
    Javaid A; Javaid N; Wadud Z; Saba T; Sheta OE; Saleem MQ; Alzahrani ME
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30884880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PCP: a program for supervised classification of gene expression profiles.
    Buturović LJ
    Bioinformatics; 2006 Jan; 22(2):245-7. PubMed ID: 16278240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning in medicine: a practical introduction.
    Sidey-Gibbons JAM; Sidey-Gibbons CJ
    BMC Med Res Methodol; 2019 Mar; 19(1):64. PubMed ID: 30890124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Comparative Study of Traffic Classification Techniques for Smart City Networks.
    AlZoman RM; Alenazi MJF
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining classifiers to detect faults in wastewater networks.
    Myrans J; Kapelan Z; Everson R
    Water Sci Technol; 2018 May; 77(9-10):2184-2189. PubMed ID: 29757170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estrous detection by continuous measurements of vaginal temperature and conductivity with supervised machine learning in cattle.
    Higaki S; Miura R; Suda T; Andersson LM; Okada H; Zhang Y; Itoh T; Miwakeichi F; Yoshioka K
    Theriogenology; 2019 Jan; 123():90-99. PubMed ID: 30292860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complex extreme learning machine applications in terahertz pulsed signals feature sets.
    Yin XX; Hadjiloucas S; Zhang Y
    Comput Methods Programs Biomed; 2014 Nov; 117(2):387-403. PubMed ID: 25037827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia.
    Zhang Y; Ma Y
    Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Domain adaptation problems: a DASVM classification technique and a circular validation strategy.
    Bruzzone L; Marconcini M
    IEEE Trans Pattern Anal Mach Intell; 2010 May; 32(5):770-87. PubMed ID: 20299704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated FBSE-EWT based learning framework for detection of epileptic seizures using time-segmented EEG signals.
    Anuragi A; Sisodia DS; Pachori RB
    Comput Biol Med; 2021 Sep; 136():104708. PubMed ID: 34358996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Review on Machine Learning for EEG Signal Processing in Bioengineering.
    Hosseini MP; Hosseini A; Ahi K
    IEEE Rev Biomed Eng; 2021; 14():204-218. PubMed ID: 32011262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MetaKTSP: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis.
    Kim S; Lin CW; Tseng GC
    Bioinformatics; 2016 Jul; 32(13):1966-73. PubMed ID: 27153719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of supervised machine learning algorithms for prediction of satisfaction at 2 years following total shoulder arthroplasty.
    Polce EM; Kunze KN; Fu MC; Garrigues GE; Forsythe B; Nicholson GP; Cole BJ; Verma NN
    J Shoulder Elbow Surg; 2021 Jun; 30(6):e290-e299. PubMed ID: 33010437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic Detection of Faults in Race Walking: A Comparative Analysis of Machine-Learning Algorithms Fed with Inertial Sensor Data.
    Taborri J; Palermo E; Rossi S
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30934643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Efficient Data Partitioning to Improve Classification Performance While Keeping Parameters Interpretable.
    Korjus K; Hebart MN; Vicente R
    PLoS One; 2016; 11(8):e0161788. PubMed ID: 27564393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pipeline design to identify key features and classify the chemotherapy response on lung cancer patients using large-scale genetic data.
    Valdés MG; Galván-Femenía I; Ripoll VR; Duran X; Yokota J; Gavaldà R; Rafael-Palou X; de Cid R
    BMC Syst Biol; 2018 Nov; 12(Suppl 5):97. PubMed ID: 30458782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.