These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21532977)

  • 1. Interaction Effects of the Amount of Practice, Preferred Cane Technique, and Type of Cane Technique Used on Drop-off Detection Performance.
    Kim DS; Emerson RW; Curtis A
    J Vis Impair Blind; 2010 Aug; 104(8):453-463. PubMed ID: 21532977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ergonomic factors related to drop-off detection with the long cane: effects of cane tips and techniques.
    Kim DS; Emerson RS; Curtis AB
    Hum Factors; 2010 Jun; 52(3):456-65. PubMed ID: 21077566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drop-off detection with the long cane: effect of cane shaft weight and rigidity on performance.
    Kim DS; Wall Emerson R; Naghshineh K; Auer A
    Ergonomics; 2017 Jan; 60(1):59-68. PubMed ID: 27065052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drop-off Detection with the Long Cane: Effects of Different Cane Techniques on Performance.
    Kim DS; Emerson RW; Curtis A
    J Vis Impair Blind; 2009 Sep; 103(9):519-530. PubMed ID: 21209791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of user characteristics related to drop-off detection with long cane.
    Kim DS; Emerson RW; Curtis A
    J Rehabil Res Dev; 2010; 47(3):233-42. PubMed ID: 20665349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cane length and swing arc width on drop-off and obstacle detection with the long cane.
    Kim DS; Emerson RW; Naghshineh K
    Br J Vis Impair; 2017 Sep; 35(3):217-231. PubMed ID: 29276326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obstacle Detection with the Long Cane: Effect of Cane Tip Design and Technique Modification on Performance.
    Kim DS; Emerson RW
    J Vis Impair Blind; 2018; 112(5):435-446. PubMed ID: 30923414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving obstacle detection by redesign of walking canes for blind persons.
    Schellingerhout R; Bongers RM; van Grinsven R; Smitsman AW; Van Galen GP
    Ergonomics; 2001 Apr; 44(5):513-26. PubMed ID: 11345494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanics of Long Cane Use.
    Emerson RW; Kim DS; Naghshineh K; Myers KR
    J Vis Impair Blind; 2019 May; 113(3):235-247. PubMed ID: 33828348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new primary mobility tool for the visually impaired: A white cane-adaptive mobility device hybrid.
    Rizzo JR; Conti K; Thomas T; Hudson TE; Wall Emerson R; Kim DS
    Assist Technol; 2018; 30(5):219-225. PubMed ID: 28506151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light touch cue through a cane improves pelvic stability during walking in stroke.
    Boonsinsukh R; Panichareon L; Phansuwan-Pujito P
    Arch Phys Med Rehabil; 2009 Jun; 90(6):919-26. PubMed ID: 19480866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haptic cues for orientation and postural control in sighted and blind individuals.
    Jeka JJ; Easton RD; Bentzen BL; Lackner JR
    Percept Psychophys; 1996 Apr; 58(3):409-23. PubMed ID: 8935902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balance in Blind Subjects: Cane and Fingertip Touch Induce Similar Extent and Promptness of Stance Stabilization.
    Sozzi S; Decortes F; Schmid M; Crisafulli O; Schieppati M
    Front Neurosci; 2018; 12():639. PubMed ID: 30254565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of long cane usage characteristics with the constant contact technique.
    Kim Y; Moncada-Torres A; Furrer J; Riesch M; Gassert R
    Appl Ergon; 2016 Jul; 55():216-225. PubMed ID: 26965194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of gait training with a cane and an augmented pressure sensor for enhancement of weight bearing over the affected lower limb in patients with stroke: a randomized controlled pilot study.
    Jung K; Kim Y; Cha Y; In TS; Hur YG; Chung Y
    Clin Rehabil; 2015 Feb; 29(2):135-42. PubMed ID: 25009199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body weight support through a walking cane in inexperienced users with knee osteoarthritis.
    Hart J; Hall M; Wrigley TV; Marshall CJ; Bennell KL
    Gait Posture; 2019 Jan; 67():50-56. PubMed ID: 30286316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Cane Length on Drop-off Detection Performance.
    Kim DS; Emerson RW
    J Vis Impair Blind; 2012 Jan; 106(1):31-35. PubMed ID: 24764608
    [No Abstract]   [Full Text] [Related]  

  • 18. Haptic Cues for Balance: Use of a Cane Provides Immediate Body Stabilization.
    Sozzi S; Crisafulli O; Schieppati M
    Front Neurosci; 2017; 11():705. PubMed ID: 29311785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InWalker: smart white cane for the blind.
    Husin MH; Lim YK
    Disabil Rehabil Assist Technol; 2020 Aug; 15(6):701-707. PubMed ID: 31729282
    [No Abstract]   [Full Text] [Related]  

  • 20. The walking cane length influences the postural sway of community-dwelling older women.
    Camara CTP; de Freitas SMSF; Lima CA; Amorim CF; Prado-Rico JM; Perracini MR
    Physiother Res Int; 2020 Jan; 25(1):e1804. PubMed ID: 31322813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.