These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 21533176)
1. Towards establishment of a rice stress response interactome. Seo YS; Chern M; Bartley LE; Han M; Jung KH; Lee I; Walia H; Richter T; Xu X; Cao P; Bai W; Ramanan R; Amonpant F; Arul L; Canlas PE; Ruan R; Park CJ; Chen X; Hwang S; Jeon JS; Ronald PC PLoS Genet; 2011 Apr; 7(4):e1002020. PubMed ID: 21533176 [TBL] [Abstract][Full Text] [Related]
2. Modulating rice stress tolerance by transcription factors. Khong G; Richaud F; Coudert Y; Pati PK; Santi C; Périn C; Breitler JC; Meynard D; Vinh do N; Guiderdoni E; Gantet P Biotechnol Genet Eng Rev; 2008; 25():381-403. PubMed ID: 21412363 [TBL] [Abstract][Full Text] [Related]
3. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. Narsai R; Wang C; Chen J; Wu J; Shou H; Whelan J BMC Genomics; 2013 Feb; 14():93. PubMed ID: 23398910 [TBL] [Abstract][Full Text] [Related]
4. A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors. You J; Zong W; Du H; Hu H; Xiong L Plant Mol Biol; 2014 Apr; 84(6):693-705. PubMed ID: 24337801 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice. Jisha V; Dampanaboina L; Vadassery J; Mithöfer A; Kappara S; Ramanan R PLoS One; 2015; 10(6):e0127831. PubMed ID: 26035591 [TBL] [Abstract][Full Text] [Related]
6. Current Status of Proteomic Studies on Defense Responses in Rice. Chen X; Bhadauria V; Ma B Curr Issues Mol Biol; 2016; 19():7-12. PubMed ID: 26364119 [TBL] [Abstract][Full Text] [Related]
7. ERF Transcription Factor OsBIERF3 Positively Contributes to Immunity against Fungal and Bacterial Diseases but Negatively Regulates Cold Tolerance in Rice. Hong Y; Wang H; Gao Y; Bi Y; Xiong X; Yan Y; Wang J; Li D; Song F Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054806 [TBL] [Abstract][Full Text] [Related]
8. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Tao Z; Liu H; Qiu D; Zhou Y; Li X; Xu C; Wang S Plant Physiol; 2009 Oct; 151(2):936-48. PubMed ID: 19700558 [TBL] [Abstract][Full Text] [Related]
9. Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. Campo S; Peris-Peris C; Montesinos L; Peñas G; Messeguer J; San Segundo B J Exp Bot; 2012 Jan; 63(2):983-99. PubMed ID: 22016430 [TBL] [Abstract][Full Text] [Related]
10. Functional inactivation of OsGCNT induces enhanced disease resistance to Xanthomonas oryzae pv. oryzae in rice. Xu X; Chen Z; Shi YF; Wang HM; He Y; Shi L; Chen T; Wu JL; Zhang XB BMC Plant Biol; 2018 Nov; 18(1):264. PubMed ID: 30382816 [TBL] [Abstract][Full Text] [Related]
11. Rice glutaredoxin GRXS15 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae and Fusarium fujikuroi. Son S; Kim H; Lee KS; Kim S; Park SR Biochem Biophys Res Commun; 2020 Dec; 533(4):1385-1392. PubMed ID: 33097183 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive analysis of VQ motif-containing gene expression in rice defense responses to three pathogens. Li N; Li X; Xiao J; Wang S Plant Cell Rep; 2014 Sep; 33(9):1493-505. PubMed ID: 24871256 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of Rice Wall-Associated Kinase 25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens. Harkenrider M; Sharma R; De Vleesschauwer D; Tsao L; Zhang X; Chern M; Canlas P; Zuo S; Ronald PC PLoS One; 2016; 11(1):e0147310. PubMed ID: 26795719 [TBL] [Abstract][Full Text] [Related]
14. Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea. Sun L; Zhang H; Li D; Huang L; Hong Y; Ding XS; Nelson RS; Zhou X; Song F Plant Mol Biol; 2013 Jan; 81(1-2):41-56. PubMed ID: 23103994 [TBL] [Abstract][Full Text] [Related]
15. Comparative proteomics reveals differential induction of both biotic and abiotic stress response associated proteins in rice during Xanthomonas oryzae pv. oryzae infection. Kumar A; Bimolata W; Kannan M; Kirti PB; Qureshi IA; Ghazi IA Funct Integr Genomics; 2015 Jul; 15(4):425-37. PubMed ID: 25648443 [TBL] [Abstract][Full Text] [Related]
16. A bacterial F-box effector suppresses SAR immunity through mediating the proteasomal degradation of OsTrxh2 in rice. Ji H; Liu D; Zhang Z; Sun J; Han B; Li Z Plant J; 2020 Nov; 104(4):1054-1072. PubMed ID: 32881160 [TBL] [Abstract][Full Text] [Related]
17. Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Tyagi H; Jha S; Sharma M; Giri J; Tyagi AK Plant Sci; 2014 Aug; 225():68-76. PubMed ID: 25017161 [TBL] [Abstract][Full Text] [Related]
18. Dual RNA-seq of Xanthomonas oryzae pv. oryzicola infecting rice reveals novel insights into bacterial-plant interaction. Liao ZX; Ni Z; Wei XL; Chen L; Li JY; Yu YH; Jiang W; Jiang BL; He YQ; Huang S PLoS One; 2019; 14(4):e0215039. PubMed ID: 30995267 [TBL] [Abstract][Full Text] [Related]
19. Xanthomonas oryzae pv. oryzae type III effector PthXo3JXOV suppresses innate immunity, induces susceptibility and binds to multiple targets in rice. Li R; Wang S; Sun R; He X; Liu Y; Song C FEMS Microbiol Lett; 2018 Apr; 365(7):. PubMed ID: 29514188 [TBL] [Abstract][Full Text] [Related]
20. Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses. Deb S; Ghosh P; Patel HK; Sonti RV Plant J; 2020 Oct; 104(2):332-350. PubMed ID: 32654337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]