These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 21533556)

  • 21. Changes in center-of-pressure dynamics during upright standing related to decreased balance control in young adults: fractional Brownian motion analysis.
    Tanaka H; Uetake T; Kuriki S; Ikeda S
    J Hum Ergol (Tokyo); 2002 Dec; 31(1-2):1-11. PubMed ID: 12908330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Head and body sway in response to vertical visual stimulation.
    Kobayashi K; Fushiki H; Asai M; Watanabe Y
    Acta Otolaryngol; 2005 Aug; 125(8):858-62. PubMed ID: 16158533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proprioceptive impairment and postural orientation control in Parkinson's disease.
    Vaugoyeau M; Hakam H; Azulay JP
    Hum Mov Sci; 2011 Apr; 30(2):405-14. PubMed ID: 21419506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pronounced overestimation of support surface tilt during stance.
    Maurer C; Schweigart G; Mergner T
    Exp Brain Res; 2006 Jan; 168(1-2):41-50. PubMed ID: 16132967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. STABILOMETRIC VALUES OF HUMANS UNDER THE CONDITIONS OF FORWARD AND BACKWARD BENT POSITIONS.
    Garkavenko VV; Kolosova EV; Maksimov VD
    Fiziol Zh (1994); 2016; 62(1):62-7. PubMed ID: 29537201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptation to continuous perturbation of balance: progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions.
    Schmid M; Bottaro A; Sozzi S; Schieppati M
    Hum Mov Sci; 2011 Apr; 30(2):262-78. PubMed ID: 21440318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences in preferred reference frames for postural orientation shown by after-effects of stance on an inclined surface.
    Kluzik J; Horak FB; Peterka RJ
    Exp Brain Res; 2005 May; 162(4):474-89. PubMed ID: 15654594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variability of visually-induced center of pressure displacements is reduced while young adults perform unpredictable saccadic eye movements inside a moving room.
    Belizário Brito M; Chiozi Gotardi G; Tosi Rodrigues S; Carvalho Cavalieri B; Nera Lima D; Lemes de Moraes R; Scarparo Ferreira L; Augusto Barbieri F; Angelo Barela J; Fávaro Polastri P
    Neurosci Lett; 2021 Nov; 764():136276. PubMed ID: 34597705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptation of postural orientation to changes in surface inclination.
    Kluzik J; Peterka RJ; Horak FB
    Exp Brain Res; 2007 Mar; 178(1):1-17. PubMed ID: 17039357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of upright stance over inclined surfaces.
    Mezzarane RA; Kohn AF
    Exp Brain Res; 2007 Jun; 180(2):377-88. PubMed ID: 17279384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The Influence of Light Tactile Contact on the Maintenance of Vertical Posture under the Conditions of Destabilization of the Visual Environment].
    Kozhina GV; Levik YS; Smetanin BN
    Fiziol Cheloveka; 2015; 41(5):98-107. PubMed ID: 26601413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of diminished and conflicting sensory information on balance in patients with cerebellar deficits.
    Gatev P; Thomas S; Lou JS; Lim M; Hallett M
    Mov Disord; 1996 Nov; 11(6):654-64. PubMed ID: 8914091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of plantar cutaneous sensation in unperturbed stance.
    Meyer PF; Oddsson LI; De Luca CJ
    Exp Brain Res; 2004 Jun; 156(4):505-12. PubMed ID: 14968274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Postural adaptation to unilateral hip muscle fatigue during human bipedal standing.
    Vuillerme N; Sporbert C; Pinsault N
    Gait Posture; 2009 Jul; 30(1):122-5. PubMed ID: 19403311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of head orientation on postural control during upright stance and forward lean.
    Johnson MB; Van Emmerik R EA
    Motor Control; 2012 Jan; 16(1):81-93. PubMed ID: 22402222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of virtual reality on postural stability during movements of quiet stance.
    Horlings CG; Carpenter MG; Küng UM; Honegger F; Wiederhold B; Allum JH
    Neurosci Lett; 2009 Feb; 451(3):227-31. PubMed ID: 19146921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Voluntary control of forward leaning posture relates to low-frequency neural inputs to the medial gastrocnemius muscle.
    Watanabe T; Nojima I; Sugiura H; Yacoubi B; Christou EA
    Gait Posture; 2019 Feb; 68():187-192. PubMed ID: 30497039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of simulated peripheral visual field loss on the static postural control in young healthy adults.
    Taneda K; Mani H; Kato N; Komizunai S; Ishikawa K; Maruya T; Hasegawa N; Takamatsu Y; Asaka T
    Gait Posture; 2021 May; 86():233-239. PubMed ID: 33774584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
    King AC; Wang Z
    Hum Mov Sci; 2017 Aug; 54():182-190. PubMed ID: 28501732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of postural control during bilateral stance - Effect of support area, visual input and age.
    Raffalt PC; Spedden ME; Geertsen SS
    Hum Mov Sci; 2019 Oct; 67():102462. PubMed ID: 31330476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.