BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

765 related articles for article (PubMed ID: 21533652)

  • 1. Definition and testing of the GROMOS force-field versions 54A7 and 54B7.
    Schmid N; Eichenberger AP; Choutko A; Riniker S; Winger M; Mark AE; van Gunsteren WF
    Eur Biophys J; 2011 Jul; 40(7):843-56. PubMed ID: 21533652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refinement of the application of the GROMOS 54A7 force field to β-peptides.
    Lin Z; van Gunsteren WF
    J Comput Chem; 2013 Dec; 34(32):2796-805. PubMed ID: 24122968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins.
    Reif MM; Winger M; Oostenbrink C
    J Chem Theory Comput; 2013 Feb; 9(2):1247-1264. PubMed ID: 23418406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of the GROMOS 54A7 Force Field with Respect to β-Peptide Folding.
    Huang W; Lin Z; van Gunsteren WF
    J Chem Theory Comput; 2011 May; 7(5):1237-43. PubMed ID: 26610119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6.
    Oostenbrink C; Villa A; Mark AE; van Gunsteren WF
    J Comput Chem; 2004 Oct; 25(13):1656-76. PubMed ID: 15264259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of the 53A6 GROMOS force field.
    Oostenbrink C; Soares TA; van der Vegt NF; van Gunsteren WF
    Eur Biophys J; 2005 Jun; 34(4):273-84. PubMed ID: 15803330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational state-specific free energy differences by one-step perturbation: protein secondary structure preferences of the GROMOS 43A1 and 53A6 force fields.
    Lin Z; Van Gunsteren WF; Liu H
    J Comput Chem; 2011 Jul; 32(10):2290-7. PubMed ID: 21541965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GROMOS 53A6GLYC, an Improved GROMOS Force Field for Hexopyranose-Based Carbohydrates.
    Pol-Fachin L; Rusu VH; Verli H; Lins RD
    J Chem Theory Comput; 2012 Nov; 8(11):4681-90. PubMed ID: 26605624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Using Single Atomistic Long-Range Cutoff Schemes with the GROMOS 54A7 Force Field.
    Silva TFD; Vila-Viçosa D; Reis PBPS; Victor BL; Diem M; Oostenbrink C; Machuqueiro M
    J Chem Theory Comput; 2018 Nov; 14(11):5823-5833. PubMed ID: 30354115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of thionated hen egg white lysozyme.
    Huang W; Eichenberger AP; van Gunsteren WF
    Protein Sci; 2012 Aug; 21(8):1153-61. PubMed ID: 22653637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the GROMOS force-field parameter set 45Alpha3 against nuclear magnetic resonance data of hen egg lysozyme.
    Soares TA; Daura X; Oostenbrink C; Smith LJ; van Gunsteren WF
    J Biomol NMR; 2004 Dec; 30(4):407-22. PubMed ID: 15630561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refining the description of peptide backbone conformations improves protein simulations using the GROMOS 53A6 force field.
    Cao Z; Lin Z; Wang J; Liu H
    J Comput Chem; 2009 Mar; 30(4):645-60. PubMed ID: 18780355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How sensitive are nanosecond molecular dynamics simulations of proteins to changes in the force field?
    Villa A; Fan H; Wassenaar T; Mark AE
    J Phys Chem B; 2007 May; 111(21):6015-25. PubMed ID: 17489626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force field evaluation for biomolecular simulation: free enthalpies of solvation of polar and apolar compounds in various solvents.
    Geerke DP; van Gunsteren WF
    Chemphyschem; 2006 Mar; 7(3):671-8. PubMed ID: 16514695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reoptimized interaction parameters for the peptide-backbone model compound N-methylacetamide in the GROMOS force field: influence on the folding properties of two beta-peptides in methanol.
    Horta BA; Lin Z; Huang W; Riniker S; van Gunsteren WF; Hünenberger PH
    J Comput Chem; 2012 Sep; 33(24):1907-17. PubMed ID: 22648867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Update on phosphate and charged post-translationally modified amino acid parameters in the GROMOS force field.
    Margreitter C; Reif MM; Oostenbrink C
    J Comput Chem; 2017 Apr; 38(10):714-720. PubMed ID: 28120339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of hen egg white lysozyme: a test of the GROMOS96 force field against nuclear magnetic resonance data.
    Stocker U; van Gunsteren WF
    Proteins; 2000 Jul; 40(1):145-53. PubMed ID: 10813839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid Bilayers: The Effect of Force Field on Ordering and Dynamics.
    Poger D; Mark AE
    J Chem Theory Comput; 2012 Nov; 8(11):4807-17. PubMed ID: 26605633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation and Comparison of Force Fields for Native Cyclodextrins in Aqueous Solution.
    Gebhardt J; Kleist C; Jakobtorweihen S; Hansen N
    J Phys Chem B; 2018 Feb; 122(5):1608-1626. PubMed ID: 29287148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amine hydration: a united-atom force-field solution.
    Oostenbrink C; Juchli D; van Gunsteren WF
    Chemphyschem; 2005 Sep; 6(9):1800-4. PubMed ID: 16075431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.