BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

765 related articles for article (PubMed ID: 21533652)

  • 21. An improved nucleic acid parameter set for the GROMOS force field.
    Soares TA; Hünenberger PH; Kastenholz MA; Kräutler V; Lenz T; Lins RD; Oostenbrink C; van Gunsteren WF
    J Comput Chem; 2005 May; 26(7):725-37. PubMed ID: 15770662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomolecular structure refinement using the GROMOS simulation software.
    Schmid N; Allison JR; Dolenc J; Eichenberger AP; Kunz AP; van Gunsteren WF
    J Biomol NMR; 2011 Nov; 51(3):265-81. PubMed ID: 21858640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating nonpolarizable nucleic acid force fields: a systematic comparison of the nucleobases hydration free energies and chloroform-to-water partition coefficients.
    Wolf MG; Groenhof G
    J Comput Chem; 2012 Oct; 33(28):2225-32. PubMed ID: 22782700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of Protein Backbone Dihedral Angles by Means of Hamiltonian Reweighting.
    Margreitter C; Oostenbrink C
    J Chem Inf Model; 2016 Sep; 56(9):1823-34. PubMed ID: 27559757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers.
    Hansen HS; Hünenberger PH
    J Comput Chem; 2011 Apr; 32(6):998-1032. PubMed ID: 21387332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y; Beveridge DL
    Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Is the prediction of pKa values by constant-pH molecular dynamics being hindered by inherited problems?
    Machuqueiro M; Baptista AM
    Proteins; 2011 Dec; 79(12):3437-47. PubMed ID: 22072522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extension and validation of the GROMOS 53A6(GLYC) parameter set for glycoproteins.
    Pol-Fachin L; Verli H; Lins RD
    J Comput Chem; 2014 Nov; 35(29):2087-95. PubMed ID: 25196137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study of generalized born models: Born radii and peptide folding.
    Zhu J; Alexov E; Honig B
    J Phys Chem B; 2005 Feb; 109(7):3008-22. PubMed ID: 16851315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A systematic approach to calibrate a transferable polarizable force field parameter set for primary alcohols.
    Visscher KM; Vosmeer CR; Luirink RA; Geerke DP
    J Comput Chem; 2017 Mar; 38(8):508-517. PubMed ID: 28133840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of multiple Amber force fields and development of improved protein backbone parameters.
    Hornak V; Abel R; Okur A; Strockbine B; Roitberg A; Simmerling C
    Proteins; 2006 Nov; 65(3):712-25. PubMed ID: 16981200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hamiltonian Reweighing To Refine Protein Backbone Dihedral Angle Parameters in the GROMOS Force Field.
    Diem M; Oostenbrink C
    J Chem Inf Model; 2020 Jan; 60(1):279-288. PubMed ID: 31873012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Why the OPLS-AA force field cannot produce the β-hairpin structure of H1 peptide in solution when comparing with the GROMOS 43A1 force field?
    Cao Z; Liu L; Wang J
    J Biomol Struct Dyn; 2011 Dec; 29(3):527-39. PubMed ID: 22066538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and dynamics of two beta-peptides in solution from molecular dynamics simulations validated against experiment.
    Zagrovic B; Gattin Z; Lau JK; Huber M; van Gunsteren WF
    Eur Biophys J; 2008 Jul; 37(6):903-12. PubMed ID: 18368403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental polarity induces conformational transitions in a helical peptide sequence from bacteriophage T4 lysozyme and its tandem duplicate: a molecular dynamics simulation study.
    Kaur H; Sasidhar YU
    J Mol Model; 2015 Apr; 21(4):88. PubMed ID: 25773700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conformational structure of gaseous 3-chloropropanoyl chloride by electron diffraction, normal coordinate analysis, and ab initio molecular orbital, and density functional theory calculations.
    Johansen TH; Hagen K
    J Phys Chem A; 2006 Sep; 110(38):11136-44. PubMed ID: 16986848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.