These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21533698)

  • 1. Deliberate utilization of interaction torques brakes elbow extension in a fast throwing motion.
    Hore J; Debicki DB; Gribble PL; Watts S
    Exp Brain Res; 2011 May; 211(1):63-72. PubMed ID: 21533698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel shoulder-elbow mechanism for increasing speed in a multijoint arm movement.
    Debicki DB; Watts S; Gribble PL; Hore J
    Exp Brain Res; 2010 Jun; 203(3):601-13. PubMed ID: 20454785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Braking of elbow extension in fast overarm throws made by skilled and unskilled subjects.
    Hore J; Debicki DB; Watts S
    Exp Brain Res; 2005 Jul; 164(3):365-75. PubMed ID: 15883810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wrist muscle activation, interaction torque and mechanical properties in unskilled throws of different speeds.
    Debicki DB; Gribble PL; Watts S; Hore J
    Exp Brain Res; 2011 Jan; 208(1):115-25. PubMed ID: 20981538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement.
    Cooper SE; Martin JH; Ghez C
    J Neurophysiol; 2000 Oct; 84(4):1988-2000. PubMed ID: 11024092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics.
    Topka H; Konczak J; Schneider K; Boose A; Dichgans J
    Exp Brain Res; 1998 Apr; 119(4):493-503. PubMed ID: 9588784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics of arm joint rotations in cerebellar and unskilled subjects associated with the inability to throw fast.
    Timmann D; Lee P; Watts S; Hore J
    Cerebellum; 2008; 7(3):366-78. PubMed ID: 18597149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhythmic and discrete elements in multi-joint coordination.
    Sternad D; Dean WJ
    Brain Res; 2003 Nov; 989(2):152-71. PubMed ID: 14556937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar ataxia: abnormal control of interaction torques across multiple joints.
    Bastian AJ; Martin TA; Keating JG; Thach WT
    J Neurophysiol; 1996 Jul; 76(1):492-509. PubMed ID: 8836239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The leading joint hypothesis for spatial reaching arm motions.
    Ambike S; Schmiedeler JP
    Exp Brain Res; 2013 Feb; 224(4):591-603. PubMed ID: 23229774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical Comparisons Among Fastball, Slider, Curveball, and Changeup Pitch Types and Between Balls and Strikes in Professional Baseball Pitchers.
    Escamilla RF; Fleisig GS; Groeschner D; Akizuki K
    Am J Sports Med; 2017 Dec; 45(14):3358-3367. PubMed ID: 28968139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-body dynamic coupling mechanism for generating throwing arm velocity during baseball pitching.
    Naito K; Takagi T; Kubota H; Maruyama T
    Hum Mov Sci; 2017 Aug; 54():363-376. PubMed ID: 28692836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commonalities and differences in control of various drawing movements.
    Dounskaia N; Ketcham CJ; Stelmach GE
    Exp Brain Res; 2002 Sep; 146(1):11-25. PubMed ID: 12192573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic chain of overarm throwing in terms of joint rotations revealed by induced acceleration analysis.
    Hirashima M; Yamane K; Nakamura Y; Ohtsuki T
    J Biomech; 2008 Sep; 41(13):2874-83. PubMed ID: 18678375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players.
    Hirashima M; Kudo K; Watarai K; Ohtsuki T
    J Neurophysiol; 2007 Jan; 97(1):680-91. PubMed ID: 17079349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematics of wrist joint flexion in overarm throws made by skilled subjects.
    Debicki DB; Gribble PL; Watts S; Hore J
    Exp Brain Res; 2004 Feb; 154(3):382-94. PubMed ID: 14598003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization and compensation of interaction torques during ball-throwing movements.
    Hirashima M; Kudo K; Ohtsuki T
    J Neurophysiol; 2003 Apr; 89(4):1784-96. PubMed ID: 12611996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Errors in the control of joint rotations associated with inaccuracies in overarm throws.
    Hore J; Watts S; Tweed D
    J Neurophysiol; 1996 Mar; 75(3):1013-25. PubMed ID: 8867114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of interaction torques during dart throwing: Differences between novices and experts.
    Rezzoug N; Hansen C; Gorce P; Isableu B
    Hum Mov Sci; 2018 Feb; 57():258-266. PubMed ID: 28919168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.