These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 21533891)
1. Elucidating the principles of the molecular organization of heteropolymeric tight junction strands. Piontek J; Fritzsche S; Cording J; Richter S; Hartwig J; Walter M; Yu D; Turner JR; Gehring C; Rahn HP; Wolburg H; Blasig IE Cell Mol Life Sci; 2011 Dec; 68(23):3903-18. PubMed ID: 21533891 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of claudin-5 but not claudin-3 induces formation of trans-interaction-dependent multilamellar bodies. Rossa J; Lorenz D; Ringling M; Veshnyakova A; Piontek J Ann N Y Acad Sci; 2012 Jun; 1257():59-66. PubMed ID: 22671590 [TBL] [Abstract][Full Text] [Related]
3. Visualization and quantitative analysis of reconstituted tight junctions using localization microscopy. Kaufmann R; Piontek J; Grüll F; Kirchgessner M; Rossa J; Wolburg H; Blasig IE; Cremer C PLoS One; 2012; 7(2):e31128. PubMed ID: 22319608 [TBL] [Abstract][Full Text] [Related]
4. Probing the cis-arrangement of prototype tight junction proteins claudin-1 and claudin-3. Milatz S; Piontek J; Schulzke JD; Blasig IE; Fromm M; Günzel D Biochem J; 2015 Jun; 468(3):449-58. PubMed ID: 25849148 [TBL] [Abstract][Full Text] [Related]
5. Directed structural modification of Clostridium perfringens enterotoxin to enhance binding to claudin-5. Protze J; Eichner M; Piontek A; Dinter S; Rossa J; Blecharz KG; Vajkoczy P; Piontek J; Krause G Cell Mol Life Sci; 2015 Apr; 72(7):1417-32. PubMed ID: 25342221 [TBL] [Abstract][Full Text] [Related]
6. Polar and charged extracellular residues conserved among barrier-forming claudins contribute to tight junction strand formation. Piontek A; Rossa J; Protze J; Wolburg H; Hempel C; Günzel D; Krause G; Piontek J Ann N Y Acad Sci; 2017 Jun; 1397(1):143-156. PubMed ID: 28415153 [TBL] [Abstract][Full Text] [Related]
7. Assembly of Tight Junction Strands: Claudin-10b and Claudin-3 Form Homo-Tetrameric Building Blocks that Polymerise in a Channel-Independent Manner. Hempel C; Protze J; Altun E; Riebe B; Piontek A; Fromm A; Lee IM; Saleh T; Günzel D; Krause G; Piontek J J Mol Biol; 2020 Mar; 432(7):2405-2427. PubMed ID: 32142789 [TBL] [Abstract][Full Text] [Related]
8. Claudin-3 and claudin-5 protein folding and assembly into the tight junction are controlled by non-conserved residues in the transmembrane 3 (TM3) and extracellular loop 2 (ECL2) segments. Rossa J; Ploeger C; Vorreiter F; Saleh T; Protze J; Günzel D; Wolburg H; Krause G; Piontek J J Biol Chem; 2014 Mar; 289(11):7641-53. PubMed ID: 24478310 [TBL] [Abstract][Full Text] [Related]
9. Model for the architecture of claudin-based paracellular ion channels through tight junctions. Suzuki H; Tani K; Tamura A; Tsukita S; Fujiyoshi Y J Mol Biol; 2015 Jan; 427(2):291-7. PubMed ID: 25451028 [TBL] [Abstract][Full Text] [Related]
10. Molecular architecture and assembly of the tight junction backbone. Piontek J; Krug SM; Protze J; Krause G; Fromm M Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183279. PubMed ID: 32224152 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of Clostridium perfringens enterotoxin interaction with claudin-3/-4 protein suggests structural modifications of the toxin to target specific claudins. Veshnyakova A; Piontek J; Protze J; Waziri N; Heise I; Krause G J Biol Chem; 2012 Jan; 287(3):1698-708. PubMed ID: 22128179 [TBL] [Abstract][Full Text] [Related]
13. Tight junction strand formation by claudin-10 isoforms and claudin-10a/-10b chimeras. Milatz S; Piontek J; Hempel C; Meoli L; Grohe C; Fromm A; Lee IM; El-Athman R; Günzel D Ann N Y Acad Sci; 2017 Oct; 1405(1):102-115. PubMed ID: 28633196 [TBL] [Abstract][Full Text] [Related]
14. Functions of claudin tight junction proteins and their complex interactions in various physiological systems. Elkouby-Naor L; Ben-Yosef T Int Rev Cell Mol Biol; 2010; 279():1-32. PubMed ID: 20797675 [TBL] [Abstract][Full Text] [Related]
15. Biochemical and biophysical analyses of tight junction permeability made of claudin-16 and claudin-19 dimerization. Gong Y; Renigunta V; Zhou Y; Sunq A; Wang J; Yang J; Renigunta A; Baker LA; Hou J Mol Biol Cell; 2015 Dec; 26(24):4333-46. PubMed ID: 26446843 [TBL] [Abstract][Full Text] [Related]
16. Biophysics of claudin proteins in tight junction architecture: Three decades of progress. Marsch P; Rajagopal N; Nangia S Biophys J; 2024 Aug; 123(16):2363-2378. PubMed ID: 38859584 [TBL] [Abstract][Full Text] [Related]
17. The Claudins: From Tight Junctions to Biological Systems. Tsukita S; Tanaka H; Tamura A Trends Biochem Sci; 2019 Feb; 44(2):141-152. PubMed ID: 30665499 [TBL] [Abstract][Full Text] [Related]
18. Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport. Milatz S; Himmerkus N; Wulfmeyer VC; Drewell H; Mutig K; Hou J; Breiderhoff T; Müller D; Fromm M; Bleich M; Günzel D Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E219-E227. PubMed ID: 28028216 [TBL] [Abstract][Full Text] [Related]
19. Conceptual barriers to understanding physical barriers. Lingaraju A; Long TM; Wang Y; Austin JR; Turner JR Semin Cell Dev Biol; 2015 Jun; 42():13-21. PubMed ID: 26003050 [TBL] [Abstract][Full Text] [Related]
20. Crystal structures of claudins: insights into their intermolecular interactions. Suzuki H; Tani K; Fujiyoshi Y Ann N Y Acad Sci; 2017 Jun; 1397(1):25-34. PubMed ID: 28605828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]