These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 21533960)
1. Early growth response gene 1 regulates bone properties in mice. Reumann MK; Strachna O; Lukashova L; Verdelis K; Donnelly E; Boskey AL; Mayer-Kuckuk P Calcif Tissue Int; 2011 Jul; 89(1):1-9. PubMed ID: 21533960 [TBL] [Abstract][Full Text] [Related]
2. Disruption of aldehyde dehydrogenase 2 gene results in altered cortical bone structure and increased cortical bone mineral density in the femoral diaphysis of mice. Tsuchiya T; Sakai A; Menuki K; Mori T; Takeuchi Y; Kanoh S; Utsunomiya H; Murai T; Isse T; Kawamoto T; Nakamura T Bone; 2013 Apr; 53(2):358-68. PubMed ID: 23313283 [TBL] [Abstract][Full Text] [Related]
3. Accretion of bone quantity and quality in the developing mouse skeleton. Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847 [TBL] [Abstract][Full Text] [Related]
4. Gender specific LRP5 influences on trabecular bone structure and strength. Dubrow SA; Hruby PM; Akhter MP J Musculoskelet Neuronal Interact; 2007; 7(2):166-73. PubMed ID: 17627087 [TBL] [Abstract][Full Text] [Related]
5. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder. Tu SJ; Huang HW; Chang WJ Micron; 2015 Apr; 71():14-21. PubMed ID: 25614341 [TBL] [Abstract][Full Text] [Related]
6. Effects of methylprednisolone on bone mineral density and microarchitecture of trabecular bones in rats with administration time and assessed by micro-computed tomography. Liu SP; Liao EY; Chen J; Yang SM; Li JW; Sheng ZF; Mo H; Wu XP; Yao L; Dai RC Acta Radiol; 2009 Jan; 50(1):93-100. PubMed ID: 19052933 [TBL] [Abstract][Full Text] [Related]
7. Micro-computed tomography assessment of the progression of fracture healing in mice. O'Neill KR; Stutz CM; Mignemi NA; Burns MC; Murry MR; Nyman JS; Schoenecker JG Bone; 2012 Jun; 50(6):1357-67. PubMed ID: 22453081 [TBL] [Abstract][Full Text] [Related]
8. Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice. Yang MW; Wang TH; Yan PP; Chu LW; Yu J; Gao ZD; Li YZ; Guo BL Phytomedicine; 2011 Jan; 18(2-3):205-13. PubMed ID: 20637579 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional microstructure of the bone in a hamster model of senile osteoporosis. Chen H; Zhou X; Washimi Y; Shoumura S Bone; 2008 Sep; 43(3):494-500. PubMed ID: 18559297 [TBL] [Abstract][Full Text] [Related]
11. Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. Bouxsein ML; Uchiyama T; Rosen CJ; Shultz KL; Donahue LR; Turner CH; Sen S; Churchill GA; Müller R; Beamer WG J Bone Miner Res; 2004 Apr; 19(4):587-99. PubMed ID: 15005846 [TBL] [Abstract][Full Text] [Related]
12. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. Glatt V; Canalis E; Stadmeyer L; Bouxsein ML J Bone Miner Res; 2007 Aug; 22(8):1197-207. PubMed ID: 17488199 [TBL] [Abstract][Full Text] [Related]
13. Bone geometry, volumetric bone mineral density, microarchitecture and estimated bone strength in Caucasian females with systemic lupus erythematosus. A cross-sectional study using HR-pQCT. Hansen S; Gudex C; Åhrberg F; Brixen K; Voss A Calcif Tissue Int; 2014 Dec; 95(6):530-9. PubMed ID: 25326144 [TBL] [Abstract][Full Text] [Related]
14. Generation of a new congenic mouse strain to test the relationships among serum insulin-like growth factor I, bone mineral density, and skeletal morphology in vivo. Bouxsein ML; Rosen CJ; Turner CH; Ackert CL; Shultz KL; Donahue LR; Churchill G; Adamo ML; Powell DR; Turner RT; Muller R; Beamer WG J Bone Miner Res; 2002 Apr; 17(4):570-9. PubMed ID: 11918215 [TBL] [Abstract][Full Text] [Related]
15. DSPP effects on in vivo bone mineralization. Verdelis K; Ling Y; Sreenath T; Haruyama N; MacDougall M; van der Meulen MC; Lukashova L; Spevak L; Kulkarni AB; Boskey AL Bone; 2008 Dec; 43(6):983-90. PubMed ID: 18789408 [TBL] [Abstract][Full Text] [Related]
16. Site-specific bone loss in senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Chen H; Zhou X; Emura S; Shoumura S Exp Gerontol; 2009 Dec; 44(12):792-8. PubMed ID: 19815059 [TBL] [Abstract][Full Text] [Related]
17. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Ward KA; Roberts SA; Adams JE; Mughal MZ Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional microarchitecture of adolescent cancellous bone. Ding M; Danielsen CC; Hvid I; Overgaard S Bone; 2012 Nov; 51(5):953-60. PubMed ID: 22884723 [TBL] [Abstract][Full Text] [Related]
19. Altered Bone Mechanics, Architecture and Composition in the Skeleton of TIMP-3-Deficient Mice. Miller B; Spevak L; Lukashova L; Javaheri B; Pitsillides AA; Boskey A; Bou-Gharios G; Carriero A Calcif Tissue Int; 2017 Jun; 100(6):631-640. PubMed ID: 28236102 [TBL] [Abstract][Full Text] [Related]
20. Effect of osteoblast-targeted expression of bcl-2 in bone: differential response in male and female mice. Pantschenko AG; Zhang W; Nahounou M; McCarthy MB; Stover ML; Lichtler AC; Clark SH; Gronowicz GA J Bone Miner Res; 2005 Aug; 20(8):1414-29. PubMed ID: 16007339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]