BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2153404)

  • 1. The effect of pH on redox titrations of haem a in cyanide-liganded cytochrome-c oxidase: experimental and modelling studies.
    Moody AJ; Rich PR
    Biochim Biophys Acta; 1990 Feb; 1015(2):205-15. PubMed ID: 2153404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The steady-state mechanism of cytochrome c oxidase: redox interactions between metal centres.
    Mason MG; Nicholls P; Cooper CE
    Biochem J; 2009 Aug; 422(2):237-46. PubMed ID: 19534725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-spin ferric forms of cytochrome a3 in mixed-ligand and partially reduced cyanide-bound derivatives of cytochrome c oxidase.
    Hill BC; Brittain T; Eglinton DG; Gadsby PM; Greenwood C; Nicholls P; Peterson J; Thomson AJ; Woon TC
    Biochem J; 1983 Oct; 215(1):57-66. PubMed ID: 6312973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Could CuB be the site of redox linkage in cytochrome c oxidase?
    Larsen RW; Pan LP; Musser SM; Li ZY; Chan SI
    Proc Natl Acad Sci U S A; 1992 Jan; 89(2):723-7. PubMed ID: 1309955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reactions of Pseudomonas cytochrome c-551 oxidase with potassium cyanide.
    Barber D; Parr SR; Greenwood C
    Biochem J; 1978 Oct; 175(1):239-49. PubMed ID: 32876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The assignment of the 655 nm spectral band of cytochrome oxidase.
    Mitchell R; Mitchell P; Rich PR
    FEBS Lett; 1991 Mar; 280(2):321-4. PubMed ID: 1849487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: a general mechanism for the interaction of copper proteins with nitric oxide?
    Cooper CE; Torres J; Sharpe MA; Wilson MT
    FEBS Lett; 1997 Sep; 414(2):281-4. PubMed ID: 9315702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation by reduction of the resting form of cytochrome c oxidase: tests of different models and evidence for the involvement of CuB.
    Wrigglesworth JM; Elsden J; Chapman A; Van der Water N; Grahn MF
    Biochim Biophys Acta; 1988 Dec; 936(3):452-64. PubMed ID: 2848581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single electron reduction of 'slow' and 'fast' cytochrome-c oxidase.
    Moody AJ; Brandt U; Rich PR
    FEBS Lett; 1991 Nov; 293(1-2):101-5. PubMed ID: 1660000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-linked protolytic reactions in soluble cytochrome-c oxidase from beef-heart mitochondria: redox Bohr effects.
    Capitanio N; Vygodina TV; Capitanio G; Konstantinov AA; Nicholls P; Papa S
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):255-65. PubMed ID: 9030268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current issues in the chemistry of cytochrome c oxidase.
    Palmer G
    J Bioenerg Biomembr; 1993 Apr; 25(2):145-51. PubMed ID: 8389747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural models of the redox centres in cytochrome oxidase.
    Holm L; Saraste M; Wikström M
    EMBO J; 1987 Sep; 6(9):2819-23. PubMed ID: 2824194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The location of CuA in mammalian cytochrome c oxidase.
    Rich PR; West IC; Mitchell P
    FEBS Lett; 1988 Jun; 233(1):25-30. PubMed ID: 2454843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Redox-dependent protonation of cytochrome oxidase hemes in submitochondrial particles of the bovine heart].
    Artsatbanov VIu; Grigor'ev VA; Konstantinov AA
    Biokhimiia; 1983 Jan; 48(1):46-53. PubMed ID: 6299407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting the H+/e- stoichiometry in mitochondrial cytochrome c oxidase: influence of the rate of electron flow and transmembrane delta pH.
    Capitanio N; Capitanio G; Demarinis DA; De Nitto E; Massari S; Papa S
    Biochemistry; 1996 Aug; 35(33):10800-6. PubMed ID: 8718871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitor effects on redox-linked protonations of the b haems of the mitochondrial bc1 complex.
    Rich PR; Jeal AE; Madgwick SA; Moody AJ
    Biochim Biophys Acta; 1990 Jul; 1018(1):29-40. PubMed ID: 2165418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral and cyanide binding properties of the cytochrome aa3 (600 nm) complex from Bacillus subtilis.
    Hill BC; Peterson J
    Arch Biochem Biophys; 1998 Feb; 350(2):273-82. PubMed ID: 9473302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IR signatures of the metal centres of bovine cytochrome c oxidase: assignments and redox-linkage.
    Dodia R; Maréchal A; Bettini S; Iwaki M; Rich PR
    Biochem Soc Trans; 2013 Oct; 41(5):1242-8. PubMed ID: 24059514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The photoreactivity of the copper-NO complexes in cytochrome c oxidase and in other copper-containing proteins.
    Wever R; Boelens R; De Boer E; Van Gelder BF; Gorren AC; Rademaker H
    J Inorg Biochem; 1985; 23(3-4):227-32. PubMed ID: 2991461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH dependence of the tryptophan fluorescence in cytochrome c oxidase: further evidence for a redox-linked conformational change associated with CuA.
    Copeland RA; Smith PA; Chan SI
    Biochemistry; 1988 May; 27(10):3552-5. PubMed ID: 2841969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.