BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 21534568)

  • 1. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase.
    Ahmad M; Roberts JN; Hardiman EM; Singh R; Eltis LD; Bugg TD
    Biochemistry; 2011 Jun; 50(23):5096-107. PubMed ID: 21534568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment.
    Rahmanpour R; Bugg TD
    FEBS J; 2013 May; 280(9):2097-104. PubMed ID: 23560779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1.
    Roberts JN; Singh R; Grigg JC; Murphy ME; Bugg TD; Eltis LD
    Biochemistry; 2011 Jun; 50(23):5108-19. PubMed ID: 21534572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and use of a bacterial lignin peroxidase with an improved manganese-oxidative activity.
    Vignali E; Tonin F; Pollegioni L; Rosini E
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10579-10588. PubMed ID: 30302519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of endogenous multi-copper oxidases mcoA and mcoC in Rhodococcus jostii RHA1 enhances lignin bioconversion to 2,4-pyridine-dicarboxylic acid.
    Rashid GMM; Sodré V; Luo J; Bugg TDH
    Biotechnol Bioeng; 2024 Apr; 121(4):1366-1370. PubMed ID: 38079064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hydroxyquinol Degradation Pathway in Rhodococcus jostii RHA1 and
    Spence EM; Scott HT; Dumond L; Calvo-Bado L; di Monaco S; Williamson JJ; Persinoti GF; Squina FM; Bugg TDH
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32737130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium.
    Singh R; Grigg JC; Qin W; Kadla JF; Murphy ME; Eltis LD
    ACS Chem Biol; 2013 Apr; 8(4):700-6. PubMed ID: 23305326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1.
    Sainsbury PD; Hardiman EM; Ahmad M; Otani H; Seghezzi N; Eltis LD; Bugg TD
    ACS Chem Biol; 2013 Oct; 8(10):2151-6. PubMed ID: 23898824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin.
    Spence EM; Calvo-Bado L; Mines P; Bugg TDH
    Microb Cell Fact; 2021 Jan; 20(1):15. PubMed ID: 33468127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers.
    Banci L; Ciofi-Baffoni S; Tien M
    Biochemistry; 1999 Mar; 38(10):3205-10. PubMed ID: 10074376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: Oxidation of Mn(II) and polymeric lignin by Dyp1B.
    Rahmanpour R; Bugg TD
    Arch Biochem Biophys; 2015 May; 574():93-8. PubMed ID: 25558792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a mycothiol ligase mutant of Rhodococcus jostii RHA1.
    Dosanjh M; Newton GL; Davies J
    Res Microbiol; 2008; 159(9-10):643-50. PubMed ID: 18832026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Thiamine Diphosphate-Dependent 4-Hydroxybenzoylformate Decarboxylase Enzymes from
    Wei Z; Wilkinson RC; Rashid GMM; Brown D; Fülöp V; Bugg TDH
    Biochemistry; 2019 Dec; 58(52):5281-5293. PubMed ID: 30946572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into sequence-activity relationships amongst Baeyer-Villiger monooxygenases as revealed by the intragenomic complement of enzymes from Rhodococcus jostii RHA1.
    Szolkowy C; Eltis LD; Bruce NC; Grogan G
    Chembiochem; 2009 May; 10(7):1208-17. PubMed ID: 19360806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distal heme pocket residues of B-type dye-decolorizing peroxidase: arginine but not aspartate is essential for peroxidase activity.
    Singh R; Grigg JC; Armstrong Z; Murphy MEP; Eltis LD
    J Biol Chem; 2012 Mar; 287(13):10623-10630. PubMed ID: 22308037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations.
    Baciocchi E; Fabbri C; Lanzalunga O
    J Org Chem; 2003 Nov; 68(23):9061-9. PubMed ID: 14604381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis.
    Doyle WA; Blodig W; Veitch NC; Piontek K; Smith AT
    Biochemistry; 1998 Oct; 37(43):15097-105. PubMed ID: 9790672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biphenyl and ethylbenzene dioxygenases of Rhodococcus jostii RHA1 transform PBDEs.
    Robrock KR; Mohn WW; Eltis LD; Alvarez-Cohen L
    Biotechnol Bioeng; 2011 Feb; 108(2):313-21. PubMed ID: 20872819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium.
    Brown ME; Barros T; Chang MC
    ACS Chem Biol; 2012 Dec; 7(12):2074-81. PubMed ID: 23054399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction kinetics of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1.
    Sucharitakul J; Wongnate T; Montersino S; van Berkel WJ; Chaiyen P
    Biochemistry; 2012 May; 51(21):4309-21. PubMed ID: 22559817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.